Robust reinforcement learning control with static

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ComputerScienceTechnicalReportRobustReinforcementLearningControlwithStaticandDynamicStabilityaR.MatthewKretchmar,PeterM.Young,CharlesW.Anderson,DouglasC.Hittle,MichaelL.Anderson,ChristopherC.DelneroColoradoStateUniversityJuly20,2000TechnicalReportCS-00-102aFromathesissubmittedtotheAcademicFacultyofColoradoStateUniversityinpartialfulfill-mentoftherequirementsforthedegreeofDoctorofPhilosophyinComputerScience.ThisworkwaspartiallysupportedbytheNationalScienceFoundationthroughgrantsCMS-9804757and9732986.ComputerScienceDepartmentColoradoStateUniversityFortCollins,CO80523-1873Phone:(970)491-5792Fax:(970)491-2466://R.MatthewKretchmar,PeterM.Young,CharlesW.Anderson,DouglasC.Hittle,MichaelL.Anderson,ChristopherC.DelneroColoradoStateUniversityJuly20,2000AbstractRobustcontroltheoryisusedtodesignstablecontrollersinthepresenceofuncertainties.Byreplacingnonlinearandtime-varyingaspectsofaneuralnetworkwithuncertainties,arobustreinforcementlearningprocedureresultsthatisguaranteedtoremainstableevenastheneuralnetworkisbeingtrained.Thebehaviorofthisprocedureisdemonstratedandanalyzedontwosimplecontroltasks.Foronetask,reinforcementlearningwithandwithoutrobustconstraintsresultsinthesamecontrolperformance,butatintermediatestagesthesystemwithoutrobustconstraintsgoesthroughaperiodofunstablebehaviorthatisavoidedwhentherobustconstraintsareincluded.FromathesissubmittedtotheAcademicFacultyofColoradoStateUniversityinpartialfulllmentoftherequirementsforthedegreeofDoctorofPhilosophyinComputerScience.ThisworkwaspartiallysupportedbytheNationalScienceFoundationthroughgrantsCMS-9804757and9732986.11IntroductionThedesignofacontrollerisbasedonamathematicalmodelthatcapturesasmuchaspossibleallthatisknownabouttheplanttobecontrolledandthatisrepresentableinthechosenmathematicalframework.Theobjectiveisnottodesignthebestcontrollerfortheplantmodel,butfortherealplant.Robustcontroltheoryachievesthisgoalbyincludinginthemodelasetofuncertainties.WhenspecifyingthemodelinaLinear-Time-Invariant(LTI)framework,thenominalmodelofthesystemisLTIand\uncertaintiesareaddedwithgainsthatareguaranteedtoboundthetruegainsofunknown,orknownandnonlinear,partsoftheplant.Robustcontroltechniquesareappliedtotheplantmodelaugmentedwithuncertaintiesandcandidatecontrollerstoanalyzethestabilityofthetruesystem.Thisisasignicantadvanceinpracticalcontrol,butdesigningacontrollerthatremainsstableinthepresenceofuncertaintieslimitstheaggressivenessoftheresultingcontroller,resultinginsuboptimalcontrolperformance.Inthisarticle,wedescribeanapproachforcombiningrobustcontroltechniqueswithareinforcementlearningalgorithmtoimprovetheperformanceofarobustcontrollerwhilemaintainingtheguaranteeofstability.Reinforcementlearningisaclassofalgorithmsforsolvingmulti-step,sequentialdecisionproblemsbyndingapolicyforchoosingsequencesofactionsthatoptimizethesumofsomeperformancecriterionovertime[27].Theyavoidtheunrealisticassumptionofknownstate-transitionprobabilitiesthatlimitsthepracticalityofdynamicprogrammingtechniques.Instead,reinforcementlearningalgorithmsadaptbyinteractingwiththeplantitself,takingeachstate,action,andnewstateobservationasasamplefromtheunknownstatetransitionprobabilitydistribution.Aframeworkmustbeestablishedwithenoughexibilitytoallowthereinforcementlearningcontrollertoadapttoagoodcontrolstrategy.Thisexibilityimpliesthattherearenumerousundesirablecontrolstrategiesalsoavailabletothelearningcontroller;theengineermustbewillingtoallowthecontrollertotemporarilyassumemanyofthesepoorercontrolstrategiesasitsearchesforthebetterones.However,manyoftheundesirablestrategiesmayproduceinstabilities.Thus,ourobjectivesfortheapproachdescribedherearetwofold.Themainobjectivethatmustalwaysbesatisedisstablebehavior.Thesecondobjectiveistoaddareinforcementlearningcomponenttothecontrollertooptimizethecontrollerbehavioronthetrueplant,whileneverviolatingthemainobjective.WhilethevastmajorityofcontrollersareLTIduetothetractablemathematicsandextensivebodyofLTIresearch,anon-LTIcontrollerisoftenabletoachievegreaterperformancethananLTIcontroller,becauseitisnotsaddledwiththelimitationsofLTI.Twoclassesofnon-LTIcontrollersareparticularlyusefulforcontrol:nonlinearcontrollersandadaptivecontrollers.However,nonlinearandadaptivecontrollersaredicult,andoftenimpossible,tostudyanalytically.Thus,theguaranteeofstablecontrolinherentinLTIdesignsissacricedfornon-LTIcontrollers.Neuralnetworksascontrollers,orneuro-controllers,constitutemuchoftherecentnon-LTIcontrolre-search.Becauseneuralnetworksarebothnonlinearandadaptive,theycanrealizesuperiorcontrolcomparedtoLTI.However,mostneuro-controllersarestaticinthattheyrespondonlytocurrentinput,sotheymaynotoeranyimprovementoverthedynamicnatureofLTIdesigns.Littleworkhasappearedondynamicneuro-controllers.Stabilityanalysisofneuro-controllershasbeenverylimited,whichgreatlylimitstheiruseinrealapplications.Thestabilityissueforsystemswithneuro-controllersencompassestwoaspects.Staticstabilityisachievedwhenthesystem

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功