第1页(共17页)2010年河南省中考数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)﹣的相反数是()A.B.﹣C.2D.﹣22.(3分)我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为()A.1.9367×1011元B.1.9367×1012元C.1.9367×1013元D.1.9367×1014元3.(3分)在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是()A.1.85和0.21B.2.11和0.46C.1.85和0.60D.2.31和0.604.(3分)如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个5.(3分)一元二次方程x2﹣3=0的根为()A.x=3B.x1=3,x2=﹣3C.x=D.x1=,x2=﹣6.(3分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)二、填空题(共9小题,每小题3分,满分27分)7.(3分)计算|﹣1|+(﹣2)2=.8.(3分)若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.9.(3分)写出一个y随x增大而增大的一次函数的解析式:.第2页(共17页)10.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.11.(3分)如图,AB切⊙O于点A,BO交⊙O于点C,点D是上异于点C、A的一点,若∠ABO=32°,则∠ADC的度数是度.12.(3分)现有点数为:2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为.13.(3分)如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为.14.(3分)如图矩形ABCD中,AB=1,AD=,以AD的长为半径的⊙A交BC于点E,则图中阴影部分的面积为.15.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是.三、解答题(共8小题,满分75分)第3页(共17页)16.(8分)已知.将它们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值其中x=3.17.(9分)如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.18.(9分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?第4页(共17页)19.(9分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?21.(10分)如图,直线y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出k1x+b﹣>0时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.第5页(共17页)22.(10分)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.23.(11分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.第6页(共17页)2010年河南省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:19367亿元即1936700000000元用科学记数法表示为1.9367×1012元.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】众数;极差.【分析】根据众数、极差的概念求解即可.【解答】解:数据1.85出现2次,次数最多,所以众数是1.85;极差=2.31﹣1.71=0.60.故选C.【点评】考查众数、极差的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.极差是最大的数与最小的数的差.4.(3分)【考点】三角形中位线定理;相似三角形的判定与性质.【分析】若D、E是AB、AC的中点,则DE是△ABC的中位线,可根据三角形中位线定理得出的等量条件进行判断.【解答】解:∵D、E是AB、AC的中点,∴DE是△ABC的中位线;∴DE∥BC,BC=2DE;(故①正确)∴△ADE∽△ABC;(故②正确)∴,即;(故③正确)因此本题的三个结论都正确,故选A.【点评】此题主要考查了三角形中位线定理以及相似三角形的判定和性质.第7页(共17页)5.(3分)【考点】解一元二次方程-直接开平方法.【分析】先移项,写成x2=3,把问题转化为求3的平方根.【解答】解:移项得x2=3,开方得x1=,x2=﹣.故选D.【点评】用直接开方法求一元二次方程的解,要仔细观察方程的特点.6.(3分)【考点】坐标与图形变化-旋转.【分析】我们已知关于原点对称的点的坐标规律:横坐标和纵坐标都互为相反数;还知道平移规律:上加下减;左加右减.在此基础上转化求解.把AA′向上平移1个单位得A的对应点A1坐标和A′对应点A2坐标后求解.【解答】解:把AA′向上平移1个单位得A的对应点A1坐标为(a,b+1).因A1、A2关于原点对称,所以A′对应点A2(﹣a,﹣b﹣1).∴A′(﹣a,﹣b﹣2).故选D.【点评】此题通过平移把问题转化为学过的知识,从而解决问题,体现了数学的化归思想.二、填空题(共9小题,每小题3分,满分27分)7.(3分)【考点】有理数的乘方;绝对值.【分析】负数的绝对值是它的相反数,负数的偶次幂是正数.【解答】解:|﹣1|+(﹣2)2=1+4=5.【点评】此题综合考查了绝对值的性质和乘方的意义.8.(3分)【考点】实数与数轴.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.9.(3分)【考点】一次函数的性质.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.10.(3分)第8页(共17页)【考点】三角形内角和定理;平行线的性质.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.11.(3分)【考点】切线的性质;圆周角定理.【分析】先根据切线的性质求出∠AOC的度数,再根据三角形内角和定理求出∠AOB的度数,由圆周角定理即可解答.【解答】解:∵AB切⊙O于点A,∴OA⊥AB,∵∠ABO=32°,∴∠AOB=90°﹣32°=58°,∴∠ADC=∠AOB=×58°=29°.【点评】此题比较简单,解答此题的关键是熟知切线的性质、三角形内角和定理及圆周角定理,有一定的综合性.12.(3分)【考点】列表法与树状图法.【分析】用树状图法列举出所有情况,看所求的情况与总情况的比值即可得答案.【解答】解:根据题意,作树状图可得:分析可得,共12种情况,有4种情况符合条件;故其概率为.【点评】树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,3行,2列,先看第一层正方体可能的最多个数,再看第二层正方体的可能的最多个数,相加即可.【解答】解:3行,2列,最底层最多有3×2=6个正方体,第二层有1个正方体,第9页(共17页)那么共有6+1=7个正方体组成.故答案为:7.【点评】主视图和左视图确定组合几何体的层数,行数及列数.14.(3分)【考点】扇形面积的计算;矩形的性质.【分析】连接AE.则阴影部分的面积等于矩形的面积减去直角三角形ABE的面积和扇形ADE的面积.根据题意,知AE=AD=,则BE=1,∠BAE=45°,则∠DAE=45°.【解答】解:连接AE.根据题意,知AE=AD=.则根据勾股定理,得BE=1.根据三角形的内角和定理,得∠BAE=45°.则∠DAE=45°.则阴影部分的面积=﹣﹣.【点评】此题综合运用了等腰直角三角形的面积、扇形的面积公式.15.(3分)【考点】直线与圆的位置关系;含30度角的直角三角形.【分析】以D为圆心,AD的长为半径画圆,当圆与BC相切时,AD最小,与线段BC相交且交点为B或C时,AD最大,分别求出即可得到范围.【解答】解:以D为圆心,AD的长为半径画圆①如图1,当圆与BC相切时,DE⊥BC时,∵∠ABC=30°,∴DE=BD,∵AB=6,∴AD=2;②如图2,当圆与BC相交时,若交点为B或C,则AD