矩阵分析在通信中的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

矩阵论在通信领域中的应用基于多输入多输出技术(MIMO)信道容量的分析1背景分析频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限;另一方面,是所使用的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MIMO)技术即利用多副发射天线和多副接收天线进行无线传输的技术的提出很好地解决了这个问题。多输入多输出(MIMO)技术能极大增加系统容量与改善无线链路质量的优点。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO的信道容量具有巨大的指导意义。但是对信道容量的推导分析是一个很复杂的过程,但是应用矩阵的知识进行分析能很好的解决这个问题,本文把矩阵理论知识与MIMO技术信道容量中的应用紧密结合,首先建立了MIMO信道模型,利用信息论理论和矩阵理论建立系统模型详细推导出MIMO信道容量,通过程序仿真反应实际情况,可以更直观正确的得出重要结论,这些结论的得出没有矩阵的知识是很难实现的。2问题的提出基于MIMO的无线通信理论和传输技术显示了巨大的潜力和发展前景。MIMO技术的核心是空时信号处理,利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理,有效地利用了信道的随机衰落和多径传播来成倍的提高传输速率,改善传输质量和提高系统容量,能在不额外增加信号带宽的前提下带来无线通信性能上几个数量级的提高。目前对MIMO技术的应用主要集中在以空时编码(STC,Space-TimeCodes)为典型的空间分集(diversity)和以BLAST(BellLAyeredSpace-Timearchitecture)为典型的空间复用(multiplexing)两个方面。MIMO作为未来一代宽带无线通信系统的框架技术,是实现充分利用空间资源以提高频谱利用率的一个必然途径。可问题是,MIMO系统大容量的实现和系统其它性能的提高以及MIMO系统中使用的各种信号处理算法的性能优劣都极大地依赖于MIMO信道的特性,特别是各个天线之间的相关性。最初对MIMO系统性能的研究与仿真通常都是在独立信道的假设下进行的,这与实际的MIMO信道大多数情况下具有一定的空间相关性是不太符合的。MIMO系统的性能在很大程度上会受到信道相关性的影响。因此,建立有效的能反映MIMO信道空间相关特性的MIMO信道模型以选择合适的处理算法并评估系统性能就变得相当重要。其中矩阵知识的应用,极大地简化的问题的分析难度,更加直观的反映出系统的特性。3模型的建立与分析3.1探讨选择模型过去的研究一般局限于用数学模型描述无线信道的时域衰落特征,重点在于建立存在于无线衰落信道中的散射体、折射体和绕射体的统计模型或几何模型,从而用于无线信道衰落分布的预测、估计和测量。针对大尺度衰落现象,研究学者们分别建立了相应的路径损耗模型、基于对数正态分布的阴影衰落模型;针对小尺度衰落现象,已经提出了Rayleigh、Ricean等分布来进行描述。研究中发现,存在于衰落信道中的散射体不仅影响信道衰落的时域特征,而且由于散射体的分布和位置的不同,导致在不同天线上的接收信号之间的空时相关特性,还反映出信道的空时衰落特征。从而基于散射体几何分布的建模方法、参数化统计建模和基于相关特征的建模方法被相继提出,大量的信道测量数据也被公布。人们逐渐发现在实际移动无线衰落信道中,最早用于描述散射体均匀分布的Clarke模型不再有效,围绕无线收发信机的散射体更多地呈现非均匀分布。已有的多数建模方法均假设了到达接收端的来波方向(AOA)、或离去发送端的去波方向(AOD)为均匀分布情形。实际上,在蜂窝移动无线通信环境中,存在大量的非均匀来波情形,比如狭窄的街道、地铁和室内情形。这些现象将会导致非均匀来波方向分布,从而影响不同天线上衰落的相关性。此外,在现有的蜂窝无线系统中,由于蜂窝微型化和小区扇形化,基站发送端的天线已由最初的全向辐射转为定向辐射,到达接收端的来波方向一般也呈非均匀分布。这些新特征急迫要求提出新的模型进行分析。目前,在MIMO信道建模中多采用的是基于空时统计特性的建模方法。而其中的基于散射体地理特征的建模方法和空时相关统计特性的建模方法又是统计建模中较多采用的两种方法。这两种方法都有各自的优缺点:(1)若基于散射体几何分布对MIMO衰落信道建模,则必须对散射体的分布进行合理的假设,并给出收发两端之间的距离、散射体的数目和尺寸以及散射体与收发两端的距离等一些可描述MIMO信道的二维几何参数。而过多的参数约束会增加建模的复杂度,同时,不同的环境下这些参数的值也不尽相同,因此,这种建模方法限制了具体的应用场合。(2)若基于统计特性对MIMO无线衰落信道进行建模,需要给出描述离开角(AOD)、到达角(AOA)、水平方向角度功率谱(PAS),电波的角度扩展(AS)等一系列参数的数学统计模型。这种方法能够较为全面的反映MIMO信道的衰落特性,特别是信道的空间衰落特性;而且目前已经有了对AOA、AOD、PAS、AS等参数在各种环境下的大量的测量值及其分布的数学描述。根据上面的模型对比可发现,采用基于空时相关统计特性的建模方法建立MIMO无线衰落信道模型可以更好地进行MIMO信道容量的分析。3.2模型的主要参数和数学描述基于空时相关特性的统计MIMO信道模型的主要参数包括:(1)信道的功率与时延的分布、多普勒功率谱等表征信道时域和频域衰落特征的参数。(2)每一可分辨径的空间特性参数:发射端信号的离开角(AOD)、接收端信号的到达角(AOA)、信号的水平方向角度功率谱(PAS)、角度扩展(AS)等。(3)发射端和接收端天线的数目和天线阵列结构以及天线元之间的间距。在上述的参数中,发射端信号的AOD是指发送信号与发射天线元之间的夹角。接收端信号的AOA是指接收信号与接收天线元之间的夹角。它们的取值范围在,区间,AOD和AOA在通常情况下服从均匀分布,在某些情况下并不服从均匀分布。角度功率谱PAS是指信号的功率谱密度在角度上的分布。研究表明,PAS主要服从3种分布:均匀分布、截断高斯分布和截断拉普拉斯分布。此外,PAS也可能是一个升余弦函数甚至为一个整数。角度扩展AS是角度功率谱PAS的二阶中心矩的平方根,在2,0之间分布。它反映了信号功率谱在角度上的色散程度。角度扩展越大,信道的空间相关性就越小,反之则相关性越大。天线的阵列结构是指天线的摆放方式,较普遍的阵列结构就是均匀线性阵列(ULA,UniformLinearArray),另外还有均匀圆形阵列(UCA,UniformCircularArray)等其它阵列结构。天线元间距是指两个相邻天线元之间的距离,天线间距通常用载波的波长λ进行归一化。天线元间距越小则空间相关性就越大,反之则相关性越小。如图1所示,考虑发射端天线数为N,接收端天线数为M的两个均匀线性天线阵列(ULA),假定天线为全向辐射天线。发射端天线阵列上的发射信号记为:TNtstststs)(),(),()(21(3.1))(tsn)表示第n个发射天线元上的发射信号,符号T表示矢量(或矩阵)的转置。同样地,接收端天线阵列上的接收信号可以表示为:TMytytytty)(),(),()(21(3.2)描述连接发射端和接收端的宽带MIMO无线信道矩阵可以表示为:)()(1lLllAH(3.3)其中NMCH)(,并且NMMNlMlMlNlllNllllaaaaaaaaaA)(1)(1)(2)(22)(21)(1)(12)(11)(为描述收发两端天线阵列在时延l下的复信道传输系数矩阵,lmnh表示从第n个发射天线到第m个接收天线之间的复传输系数。L表示可分辩径的数目。y1(t)y2(t)................ym(t)S1(t)S2(t)................Sn(t)TXRXS(t)Y(t)天线元个数N天线元个数M散射介质。。。。。。。。。。。。。。图1MIMO信道的数据模型发射信号矢量)(ts和接收信号矢量)(ty之间的关系可以表示为(不包括噪声)dtsHty)()()((3.4)或者dtyHtsT)()()((3.5)假定在远场区有很少的空间独立的主要反射体,一个主要反射体有一个主要路径,此路径含有大量的引入波,这些波是由接收机和发射机附近的本地散射体的结构引起的,它们相对时延很小,接收机不能分离出来,即为不可分辨径。由于角度扩展不为零,所以将导致空时衰落。由于发射机和接收机附近的散射体的作用,将产生许多具有微小时延的不可分辨径,使得角度扩展不为零。假设第p个可分辨径的AOA和AOD分别为Rxp和Txp,是反映关于天线阵列和主要反射体位置的量;把发送阵列、接收阵列视线方位角定义成Tx0和Rx0,则接收端第个可分辨径的角度扩展)(Rxpp为102102)1()(1)(LlLlRxplRxplRxppLL(3.6)式中,Rxpl表示第p个可分辨径中的第l个不可分辨径对应的到达角度;L标示不可分辨径的数目。对于发端的角度扩展)(Txpp同理可得。设接收天线在发送天线的远场区内,可以假设接收天线的信号是平面波。第r根接收天线的接收信号相对于第1根接收天线的附加时延为Rxrp,cdrRxpRxrpRxsin)1(,(3.7)式中,Rxd是相邻天线间的距离。对应第r根接收天线的接收信号相对于第1根接收天线的附加相移Rxpr,为cRxrpRxprRxpr,,2)((3.8)接收端均匀线性阵列的传播响应向量Rxpa可以表示为TjRxpRxpRxMjRxpeea,1,1,1(3.9)同样的可得发送端均匀线性阵列的传播响应向量Txpa可以表示为TjjTxpTxpTxMTxpeea,1,1,1(3.10)第m根发送天线的发送信号相对于第1根发送天线的附加时延Txmp,为cdmTxpTxTxmpsin)1(,(3.11)因此,相对应的附加相移Txpm,就是cRxrpTspm,,2(3.12)考虑到判决时间有限,不是所有信号的到达反射波都能分离开来。假设移动台或散射体发生运动,每一个本地散射体的路径长度发生变化,产生时变复衰落,对于给定速率v,最大频率偏移为df。第p个可分辨径的第m个发送天线和第r个接收天线之间的空时衰落系数)(,,trmp为:)(,,)cos(210,,,,)()()(1)(tjrmpfjplRxplrTxplLlmrmprmpTxpldetvevaaLt(3.13)每一个到达路径经历的衰减为lp,,假定lp,是由随机过程产生,且1。通常在仿真时认为AOD均匀分布在0~2,这样可以得到经典功率谱。在固定m和r的情况下,rmp,,和Txrmp,,表征着时间域的衰落特性;而在固定时间t时,不同的m和r对应的rmp,,和Txrmp,,则反映阵列的空间特性,其相关性由两个阵列传播响应矢量)(,Txlpma和)(,Trlpra决定。记第p个空间主散射体产生的可分辨多径的时延p,且一般假设它们之间的独立过程互相独立。不同的传播环境对应不同的Rxlp,分布。有上述分析可以知道:当本地散射体较少时,由于发射机周围本地散射体的作用,在主反射体和接收机之间的距离相对较大时,接收天线到达角的角度扩展较小,此时接收端仅仅引起时间衰落,而无空间衰落;而当接收天线周围的本地散射体较多时,造成较大的角度扩展,此时接收端产生空时衰落。3.3相关性矩阵MIMO信道中发射端和接收端天线之间的相关的程度就是相关性,相关系数在数学上定义为:)()(,2222bEbEaEaEbEaEabEba(3.14)其中,符号,表示求相关系数,符号表示复数共轭。根据a和b的性质的不同,可以定义3种不同的相关系

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功