4、机械制图直线投影

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

14.1直线的投影两点确定一条直线,将两点的同名投影用直线连接,就得到直线的同名投影。直线对一个投影面的投影特性一、直线的投影特性AB●●●●ab直线垂直于投影面投影重合为一点积聚性直线平行于投影面投影反映线段实长ab=AB直线倾斜于投影面投影比空间线段短ab=ABcosα●●AB●●abαAMB●a≡b≡m●●●aaabbb●●●●●●直线投影的基本特性一般情况下,直线的投影仍然为直线,特殊情况为一个点。2二、直线在三个投影面中的投影特性投影面平行线平行于某一投影面而与其余两投影面倾斜投影面垂直线正平线(平行于V面)侧平线(平行于W面)水平线(平行于H面)正垂线(垂直于V面)侧垂线(垂直于W面)铅垂线(垂直于H面)一般位置直线与三个投影面都倾斜的直线统称特殊位置直线垂直于某一投影面31、投影面平行线水平线正平线侧平线4baababbaabba①在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面倾角的实大。②另两个投影面上的投影平行于相应的投影轴。水平线侧平线正平线γ投影特性:与H面的夹角:α与V面的角:β与W面的夹角:γ实长实长实长βγααβbaaabb52、投影面垂直线铅垂线正垂线侧垂线6反映线段实长。且垂直于相应的投影轴。铅垂线正垂线侧垂线②另外两个投影,①在其垂直的投影面上,投影有积聚性。投影特性:●c(d)cddc●aba(b)ab●efefe(f)73、一般位置直线8投影特性:三个投影都缩短。即:都不反映空间线段的实长及与三个投影面夹角的实大,且与三根投影轴都倾斜。abbaba94.2直线与点及两直线的相对位置一、直线与点的相对位置10◆若点在直线上,则点的投影必在直线的同名投影上。并将线段的同名投影分割成与空间相同的比例。即:◆若点的投影有一个不在直线的同名投影上,则该点必不在此直线上。点在直线上的判别方法:AC/CB=ac/cb=ac/cbABCVHbccbaa定比定理11直线上的点具有两个特性:从属性若点在直线上,则点的各个投影必在直线的各同面投影上。利用这一特性可以在直线上找点,或判断已知点是否在直线上。定比性属于线段上的点分割线段之比等于其投影之比。即AC:CB=ac:cb=ac:cb=ac:cbABbbaaXOccCc12点C不在直线AB上例1:判断点C是否在线段AB上。abcabc①c②abcab●点C在直线AB上13例2:判断点K是否在线段AB上。ab●k因k不在ab上,故点K不在AB上。应用定比定理abkabk●●另一判断法?14二、两直线的相对位置平行相交交叉垂直相交15空间两直线的相对位置分为:平行、相交、交叉。⒈两直线平行投影特性:空间两直线平行,则其各同名投影必相互平行,反之亦然。aVHcbcdABCDbda16abcdcabd例1:判断图中两条直线是否平行。对于一般位置直线,只要有两个同名投影互相平行,空间两直线就平行。AB//CD①17bdcacbaddbac对于特殊位置直线,只有两个同名投影互相平行,空间直线不一定平行。求出侧面投影后可知:AB与CD不平行。例2:判断图中两条直线是否平行。②求出侧面投影如何判断?18HVABCDKabcdkabckdabcdbacdkk⒉两直线相交判别方法:若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。交点是两直线的共有点19●●cabbacdkkd例:过C点作水平线CD与AB相交。先作正面投影20dbaabcdc’1(2)3(4)⒊两直线交叉投影特性:★同名投影可能相交,但“交点”不符合空间一个点的投影规律。★“交点”是两直线上的一对重影点的投影,用其可帮助判断两直线的空间位置。●●Ⅰ、Ⅱ是V面的重影点,Ⅲ、Ⅳ是H面的重影点。为什么?12●●34●●两直线相交吗?21例题判断两直线的相对位置baacddcbX11d1c122判断两直线重影点的可见性XOBDACbbaaccdd(3)41(2)43341212判断重影点的可见性时,需要看重影点在另一投影面上的投影,坐标值大的点投影可见,反之不可见,不可见点的投影加括号表示。23例题判断两直线重影点的可见性bbcddcXaa3(4)34121(2)244、两直线垂直相交(或垂直交叉)直角的投影特性:若直角有一边平行于投影面,则它在该投影面上的投影仍为直角。设直角边BC//H面因BC⊥AB,同时BC⊥Bb所以BC⊥ABba平面直线在H面上的投影互相垂直即∠abc为直角因此bc⊥ab故bc⊥ABba平面又因BC∥bcABCabcHacbabc.证明:25dabcabc●●d例:过C点作直线与AB垂直相交。AB为正平线,正面投影反映直角。.26eee'e'c'c'例已知直线AB的两面投影和C点的水平投影,试过C点作一条直线CE垂直于AB,求直线CE的两面投影。cbab'a'OX两直线交叉27f例题过点E作线段AB、CD的公垂线EF。fOcbaabXcddee28小结★点与直线的投影特性,尤其是特殊位置直线的投影特性。★点与直线及两直线的相对位置的判断方法及投影特性。★定比定理。★直角定理,即两直线垂直时的投影特性。重点掌握:29一、各种位置直线的投影特性⒈一般位置直线三个投影与各投影轴都倾斜。⒉投影面平行线在其平行的投影面上的投影反映线段实长及与相应投影面的夹角。另两个投影平行于相应的投影轴。⒊投影面垂直线在其垂直的投影面上的投影积聚为一点。另两个投影反映实长且垂直于相应的投影轴。30二、直线上的点⒈点的投影在直线的同名投影上。⒉点分线段成定比,点的投影必分线段的投影成定比——定比定理。三、两直线的相对位置⒈平行⒉相交⒊交叉(异面)同名投影互相平行。同名投影相交,交点是两直线的共有点,且符合空间一个点的投影规律。同名投影可能相交,但“交点”不符合空间一个点的投影规律。“交点”是两直线上一对重影点的投影。31四、相互垂直的两直线的投影特性⒈两直线同时平行于某一投影面时,在该投影面上的投影反映直角。⒉两直线中有一条平行于某一投影面时,在该投影面上的投影反映直角。⒊两直线均为一般位置直线时,在三个投影面上的投影都不反映直角。直角定理

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功