2.3平面向量的基本定理及坐标表示§2.3.1平面向量基本定理教学目的:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.实数与向量的积:实数λ与向量a的积是一个向量,记作:λa(1)|λa|=|λ||a|;(2)λ0时λa与a方向相同;λ0时λa与a方向相反;λ=0时λa=02.运算定律结合律:λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb3.向量共线定理向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.二、讲解新课:平面向量基本定理:如果1e,2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e+λ22e.探究:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,1e,2e唯一确定的数量三、讲解范例:例1已知向量1e,2e求作向量2.51e+32e.例2如图ABCD的两条对角线交于点M,且AB=a,AD=b,用a,b表示MA,MB,MC和MD例3已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:OA+OB+OC+OD=4OE例4(1)如图,OA,OB不共线,AP=tAB(tR)用OA,OB表示OP.(2)设OA、OB不共线,点P在O、A、B所在的平面内,且(1)()OPtOAtOBtR.求证:A、B、P三点共线.例5已知a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数,dab、使与c共线.四、课堂练习:1.设e1、e2是同一平面内的两个向量,则有()A.e1、e2一定平行B.e1、e2的模相等C.同一平面内的任一向量a都有a=λe1+μe2(λ、μ∈R)D.若e1、e2不共线,则同一平面内的任一向量a都有a=λe1+ue2(λ、u∈R)2.已知矢量a=e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c=6e1-2e2的关系A.不共线B.共线C.相等D.无法确定3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()A.3B.-3C.0D.24.已知a、b不共线,且c=λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1=.5.已知λ1>0,λ2>0,e1、e2是一组基底,且a=λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).五、小结(略)六、课后作业(略):七、板书设计(略)八、课后记:第5课时§2.3.2—§2.3.3平面向量的正交分解和坐标表示及运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量基本定理:如果1e,2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e+λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,1e,2e唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得yjxia…………○1我们把),(yx叫做向量a的(直角)坐标,记作),(yxa…………○2其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○2式叫做向量的坐标表示.与.a相等的向量的坐标也为..........),(yx.特别地,)0,1(i,)1,0(j,)0,0(0.如图,在直角坐标平面内,以原点O为起点作aOA,则点A的位置由a唯一确定.设yjxiOA,则向量OA的坐标),(yx就是点A的坐标;反过来,点A的坐标),(yx也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1)若),(11yxa,),(22yxb,则ba),(2121yyxx,ba),(2121yyxx两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ba)()(2211jyixjyixjyyixx)()(2121即ba),(2121yyxx,同理可得ba),(2121yyxx(2)若),(11yxA,),(22yxB,则1212,yyxxAB一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)(x1,y1)=(x2x1,y2y1)(3)若),(yxa和实数,则),(yxa.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a)(yjxiyjxi,即),(yxa三、讲解范例:例1已知A(x1,y1),B(x2,y2),求AB的坐标.例2已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由DCAB得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)例4已知三个力1F(3,4),2F(2,5),3F(x,y)的合力1F+2F+3F=0,求3F的坐标.解:由题设1F+2F+3F=0得:(3,4)+(2,5)+(x,y)=(0,0)即:054023yx∴15yx∴3F(5,1)四、课堂练习:1.若M(3,-2)N(-5,-1)且21MPMN,求P点的坐标2.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:第6课时§2.3.4平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量的坐标表示分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得yjxia把),(yx叫做向量a的(直角)坐标,记作),(yxa其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,)0,1(i,)1,0(j,)0,0(0.2.平面向量的坐标运算若),(11yxa,),(22yxb,则ba),(2121yyxx,ba),(2121yyxx,),(yxa.若),(11yxA,),(22yxB,则1212,yyxxAB二、讲解新课:a∥b(b0)的充要条件是x1y2-x2y1=0设a=(x1,y1),b=(x2,y2)其中ba.由a=λb得,(x1,y1)=λ(x2,y2)2121yyxx消去λ,x1y2-x2y1=0探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵b0∴x2,y2中至少有一个不为0(2)充要条件不能写成2211xyxy∵x1,x2有可能为0(3)从而向量共线的充要条件有两种形式:a∥b(b0)01221yxyxba三、讲解范例:例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x解:∵a=(-1,x)与b=(-x,2)共线∴(-1)×2-x•(-x)=0∴x=±2∵a与b方向相同∴x=2例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB与平行于直线CD吗?解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又∵2×2-4×1=0∴AB∥CD又∵AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60∴AC与AB不平行∴A,B,C不共线∴AB与CD不重合∴AB∥CD四、课堂练习:1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6B.5C.7D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()A.-3B.-1C.1D.33.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为()A.1,2B.2,2C.3,2D.2,44.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记: