北邮电磁场与电磁波实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号第2页一、实验目的1、掌握在移动环境下阴影衰落的概念以及正确测试方法;2、研究校园内各种不同环境下阴影衰落的分布规律;3、掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;4、通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、研究建筑物穿透损耗与建筑材料的关系。二、实验内容利用DS1131场强仪,实地测量信号场强1)研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何;2)研究在校园内电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何;3)研究建筑物穿透损耗的变化规律。三、实验原理1)阴影衰落在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,因此接收功率不同,这样就会观察到衰落现象。在阴影衰落的情况下,移动台被建筑物遮挡,它所收到的信号是各种绕射、反射、散射波的合成。所以,在距基站距离相同的地方,由于阴影效应的不同,他们收到的信号功率有可能相差很大,理论和测试表明,对任意的d值,特定位置的接收功率为随机对数正态分布即:00()[]()[]()[]10log(/)rrrPddBmPddBmXPddBmnddX其中,X为0均值的高斯分布随机变量,单位为dB,标准偏差为,单位也是dB。对数正态分布描述了在传播路径上,具有相同的T-R距离时,不同的随机阴影效应。这样利用高斯分布可以方便的分析阴影的随机效应。它的概率密度函数是:第3页2221()()22xmfxe应用于阴影衰落时,上式中的x表示某一次测量得到的接受功率,m表示以dB表示的接收功率的均值或中值,表示接收功率的标准差,单位为dB。阴影衰落的标准差同地形、建筑物类型、建筑物密度等有关,在市区的150MHz频段其典型值是5dB。除了阴影效应外,大气变化也会导致慢衰落。但在测量的无线信道中,大气变化所造成的影响要比阴影效应小得多。2)大尺度路径衰落在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机和接收机之间信号的平均衰落,定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离。大尺度平均路径损耗表示为:010log/0PLddBPLdndd即平均接收功率为:0000()[][]()10log(/)()[]10log(/)rtrPddBmPdBmPLdnddPddBmndd其中,n为路径损耗指数,表明路径损耗随距离增长的速度;0d为近地参考距离;d为发射机与接收机()TR之间的距离。决定路径损耗大小的首要因素是距离,此外,它还与接收点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念。中值是使实测数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。人们根据不同的地形地貌条件,归纳总结出各种电波传播模型。i.自由空间模型ii.布灵顿模型iii.EgLi模型iv.Hata-Okumura模型3)建筑物的穿透损耗定义建筑物的穿透损耗大小对于研究室内无线信道具有重要意义。穿透损耗又称大楼效应,一般指建筑物一楼内的中值电场强度和室外附近街道上中值电场强度之差。第4页发射机位于室外,接收机位于室内,电波从室外进入到室内,产生建筑物的穿透损耗,由于建筑物存在屏蔽和吸收作用,室内场强一定小于室外的场强,造成传输损耗。室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去在同一位置室内测量的信号平均场强,用公式表示为:()()1111NMoutsideinsideijijPPPNMP是穿透损耗,单位dB,jP是在室内所测的每一点的功率,单位dBv,共M个点,iP是在室外所测的每一点的功率,单位dBv,共N个点。4)电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。四、实验步骤1、选择实验对象这次实验数据采集地点我们选择了教三内部。在选频方面,我们采用的是低频测量,频点选用的是107.3MHz2、数据采集利用场强仪DS1131测量无线信号的强度(单位dBmW),围绕教三内部墙壁,小广场以及部分的教室,此外,测量时以两步为一个测量点进行测量,数据基本保证平均取点。第5页3、数据录入将测量得到的数据录入Excel表格,分别以墙壁,教室走廊,小广场,小教室内部为一张单独的sheet,总计523个数据4、数据处理流程采集到的数据有500多组,需要对数据进行细致的处理以便得到明确的结论。下图所示为数据处理的流程图。五、matlab程序%----------------------------------------------------%分析小教室内部情况tb4etow=-1.*[67.2,50.3,63.6,58.6,67.2,54.1,51.9,49.6,51.3,54.9,59.9,48.2,41.4,45.6,47.6,45.2,48.2,39.5,50.2,57.2,55.6,50.6,52.3,54.3,60.1,54.7,66.3,59.8,60.2,58.1,64.3,49.6,57.6,56.7,62.4,56.3,56.7,45.2,56.7,45.2,56.7,52.1,42.3,45.6,63.6,50.1,48.4,51.5,58.8,53,63.8,62.6,68.7,61.2,67.7,64.6,74.2,70.9,69.2,63.2,65.9];figure(11)subplot(1,2,1);hist(tb4etow)%画样本数目直方图axis([-75,-35,0,15]);gridonstr={'小教室内部';'信号电平概率分布直方图'};title(str);xlabel('电平值(dBmw)');ylabel('样本数目(个)');数据采集数据整理和录入Matlab读取数据场强空间分布统计分析、作图实验结论分析和报告整理场强概率统计分析、作图第6页legend('实际样本分布');h=get(gca,'Children');%设置颜色set(h,'FaceColor',[.8.81])min1=min(tb4etow)%最小值max1=max(tb4etow)%最大值mean1=mean(tb4etow)%均值std1=std(tb4etow)%标准差subplot(1,2,2)x=-75:0.5:-35;y=normpdf(x,mean1,std1);%在相同均值标准差下,画正态分布图plot(x,y,'r')axis([-75,-35,0,0.2]);holdon[n,m]=hist(tb4etow);%在同一坐标系下,画出统计概率图plot(m,n/95)legend('μ,σ相同的正态分布','样本概率分布')%显示图例gridontext(-45,0.11,['最大值=',num2str(max1)]);%在图中标明最值text(-45,0.09,['最小值=',num2str(min1)]);text(-45,0.07,['平均值=',num2str(mean1,'%.2f\n')]);text(-45,0.05,['标准差=',num2str(std1,'%.2f\n')]);str={'小教室内部';'信号电平概率分布曲线与正态分布比较'};title(str);xlabel('电平值(dBmw)');ylabel('概率p(x)');第7页本组数据相比衰减较小,信号较强,但是标准差也比较大。可能是由于小教室采样点有限,造成数据标准差过大,图形也有大致的高斯分布图样。tb1etow=-1.*[69.3,65.5,72.9,71.3,63.1,77.2,71.8,71.4,74.8,72.8,74.5,72.3,74.2,66.1,67.8,69.5,70.9,75.7,62.1,66.8,68.1,66,72.7,64.1,72.3,64.6,68.3,69.1,73.1,78.4,67.8,67.2,72.6,71.6,76.4,66.8,68,73.8,69.5,70.5,70.6,64.9,67.5,72.9,73,69.4,72.3,73.8,78.1,75.6,71.1,74.1,71.9,73.5,67.8,70.6,68.8,68.6,75.9,71.2,71.8,67.8,77.2,76.7,72,68.1,66.6,75,72.9,70.9,68.8,64,68.1,70.5,69.1,71.2,66.3,67.5,73.9,69.9,67.4,75,69.5,65.3,65,68.1,66.6,75,72.9,70.9,68.8,64,68.1,70.5,69.1,71.2,66.3,67.5,73.9,69.9,67.4,75,69.5,65.3,65,68.1,66.7,69,71.3,73.5,68.1,66.5,64.5,67.8,66.2,66.5,69.3,67.7,65.8,65,64.1,64.4,63.5,68.5,60.5,67.3,70.1,67.2,64.8,73.1,66,70.5,69.5,66.6,62.8,72.7,67.8,61.3,64.4,68.8,61.8,68.2,67.1,63.3,68.4,70.3,70.5,66.7,66.1,64.1,73.5,60.6,68.8,60.9,69,68.8,68.7,66.1,70.1,69.6,70.5,67.7,63.2,67.4,63,66,68,63.7,67.7,68.2,第8页70.6,66.1,65.3,73,69.3,64.2,66.9,66.5,71.2];figure(11)subplot(1,2,1);hist(tb1etow)%画样本数目直方图axis([-80,-60,0,60]);gridonstr={'长走廊';'信号电平概率分布直方图'};title(str);xlabel('电平值(dBmw)');ylabel('样本数目(个)');legend('实际样本分布');h=get(gca,'Children');%设置颜色set(h,'FaceColor',[.8.81])min1=min(tb1etow)%最小值max1=max(tb1etow)%最大值mean1=mean(tb1etow)%均值std1=std(tb1etow)%标准差subplot(1,2,2)x=-80:0.5:-60;y=normpdf(x,mean1,std1);%在相同均值标准差下,画正态分布图plot(x,y,'r')axis([-80,-60,0,1]);holdon[n,m]=hist(tb1etow);%在同一坐标系下,画出统计概率图plot(m,n/46)legend('μ,σ相同的正态分布','样本概率分布')%显示图例gridontext(-65,0.4,['最大值=',num2str(max

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功