【精品课件】任务十二硫化矿的造锍熔炼和锍的吹炼

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

冶金原理精品课程任务十二、硫化矿的造锍熔炼和锍的吹炼上一章冶金原理精品课程任务内容一、任务目标二、解决思路三、任务实践冶金原理精品课程任务目标造锍熔炼和锍的吹炼的作用造锍熔炼和锍的吹炼是从金属硫化矿提取金属的一种重要方法,特别是在铜、镍冶金生产过程中更为典型。其主要步骤包括:造锍熔炼利用MeS与含SiO2的炉渣不互溶及密度差别的特性而使其分离。其过程是基于许多的MeS能与FeS形成低熔点的共晶熔体(工业上一般称为冰铜或锍),在液态时能完全互溶并能溶解少量的MeO的物理化学性质,使熔体和渣能很好地分离,从而提高主体金属的含量,并使主体金属被有效的富集。冶金原理精品课程任务目标锍的吹炼即在1373K~1573K的温度下对熔融状态的锍吹以空气,使其中的硫化物发生激烈的氧化,产出SO2气体和仍然保持熔融状态的金属或硫化物。理论上,以铜为例,从硫化矿中提取金属有两种方法—连续炼铜法和包括造锍熔炼、锍的吹炼分步炼铜法。分步炼铜法又可分为造低品位冰铜的传统炼铜法和造高品位冰铜的现代炼铜法。冶金原理精品课程任务目标一)造锍熔炼用硫化铜精矿生产金属铜是重要的硫化物氧化的工业过程。由于硫化铜矿一般都是含硫化铁的矿物,如CuFeS2,其矿石品位,随着资源的不断开发利用,变得含铜量愈来愈低,其精矿品位有的低到含铜只有10%左右,而含铁量可高达30%以上。如果采用只经过一次熔炼提取金属铜的方法,必然会产生大量含铜高的炉渣,造成铜的大量损失。因此,为了尽量避免铜的损失,提高铜的回收率,工业实践先要经过富集熔炼——造锍熔炼,使铜与一部分铁及其它脉石等分离。冶金原理精品课程任务目标富集熔炼是利用MeS与含SiO2的炉渣不互溶及密度差别的特性而使其分离。其过程是基于许多的MeS能与FeS形成低熔点的共晶熔体,在液态时能完全互溶并能溶解少量的MeO的物理化学性质,使熔体和渣能很好地分离,从而提高主体金属的含量,并使主体金属被有效的富集。冶金原理精品课程任务目标这种MeS的共熔体在工业上一般称为冰铜(硫)。例如铜冰铜的主体为Cu2S,其余为FeS及其它MeS。铅冰铜除含PbS外,还含有Cu2S、FeS等其它MeS。又如镍冰铜(冰镍)为Ni3O2·FeS,钴冰铜为CoS·FeS等。冶金原理精品课程任务目标二)锍的吹炼过程在工业生产中铜锍,铜镍锍和镍锍的进一步处理都是采用吹炼过程,即在1373K~1573K的温度下对熔融状态的锍吹以空气,使其中的硫化物发生激烈的氧化,产出SO2气体和仍然保持熔融状态的金属或硫化物。冶金原理精品课程解决思路一)金属硫化物氧化的吉布斯自由能图某些金属对硫和氧的稳定性关系也可根据其吉布斯自由能图(图4-4)来判断。金属硫化物的反应2MeS+O2=2MeO+S2可按下面两个反应求得:2Me+O2=2MeOΔGθ(MeO)-)2Me+S2=2MeSΔGθ(MeS)2MeS+O2=2MeO+S2ΔGθ=ΔGθ(MeO)-ΔGθ(MeS)冶金原理精品课程解决思路在大多数情况下,由于金属氧化反应的熵变小,所以它在ΔGθ—T关系图中的直线几乎是一条水平线,只是铜、铅、镍等例外。冶金原理精品课程解决思路图4-4可用来比较MeS和MeO的稳定性大小,从而使可以预见MeS—MeO之间的复杂平衡关系。例如,FeS氧化的ΔGθ比Cu2S的ΔGθ更负,于是如下反应向右进行:Cu2O+FeS=Cu2S+FeO这是由于铁对氧的亲和力大于铜对氧的亲和力,因此铁优先被氧化,所以氧化熔炼发生如下反应:2Cu2S+O2=2Cu2O+S2生成的Cu2O最终按下式Cu2S,即:冶金原理精品课程冶金原理精品课程解决思路Cu2O(1)+FeS(1)=Cu2S(1)+FeO(1)ΔGθ=-146440+19.25T,kJ·kg-1·mol-1logK=log当T=1473K时,K=104.2.以上计算所得的平衡常数值很大,这说明Cu2O几乎完全被硫化进入冰铜。因此,对铜的硫化物原料(如CuFeS2)进行造硫熔炼时,只要氧化气氛控制得当,且保证有足够的FeS存在,就可以使铜完全以Cu2S的形态进入冰铜。这就是对硫化物进行氧化富集熔炼(造硫熔炼)的理论基础。222CuSFeOCuSFeSaaaa冶金原理精品课程解决思路铜锍和铜镍锍中都含有FeS,所以吹炼的第一周期是FeS的氧化,并与加入的石英砂(SiO2)结合生成炉渣分层分离。这就是吹炼脱铁过程。其结果使铜锍由xFeS·yCu2S富集为Cu2S,而铜镍锍则由xFeS·yCu2S·zNi3S2(铜镍高锍)。这是吹炼的第一周期。对于铜镍或镍锍(xFeS·yNi3S2)的吹炼到获得镍高锍(Ni3S2)为止。对铜锍来说吹炼还有第二周期,即由Cu2S(白冰铜)吹炼粗铜的阶段。冶金原理精品课程任务实践一)锍的形成造锍过程可以说成是几种金属硫化物之间的互溶过程。当某种金属具有一种以上的硫化物时,例如Cu2S、CuS、FeS2、FeS等,其高价硫化物在熔化之前首先发生如下的热离解:铜兰2CuS=Cu2S+1/2S2黄铜矿4CuFeS2=2Cu2S+4FeS+S2冶金原理精品课程任务实践黄铁矿FeS2=FeS+1/2S2斑铜矿2Cu2FeS3=3Cu2S+2FeS+1/2S2以上热离解所产生的元素硫,遇氧即氧化成SO2随炉气逸出。而铁只部分地与结合成Cu2S以外多余的硫(S)相结合成FeS进入硫内,其余的铁则以FeO形成与脉石造渣。冶金原理精品课程任务实践由于铜对硫的亲和力比较大,故在1473K~1573K的造硫熔炼的温度下,呈稳定态的Cu2S便与FeS按下列反应熔合成冰铜:Cu2S+FeS=Cu2S·FeS同时,反应生成的FeO与脉石氧化造渣,发生如下反应:2FeO+SiO2=2FeO·SiO2冶金原理精品课程因此,利用造硫熔炼可使原料中原来呈硫化物形态的和任何呈氧化形态的铜,几乎全部都以稳定的Cu2S形态富集在冰铜中,而部分铁的硫化物优先被氧化,所生成的FeO与脉石造渣。由于硫的密度较炉渣大,且两者互不溶解,从而达到使之有效分离的目的。镍和钴的硫化物和氧化物也具有上述类似的反应。因此,通过造硫熔炼,便可使欲提取的铜、镍、钴等金属成为锍这个中间产物而产出。冶金原理精品课程二)Cu-Fe-S三元系状态图熔炼硫化矿所得各种金属的硫是复杂的硫化物共溶体,基本上是由金属的低价硫化物所组成,其中富集了所要提取的金属及贵金属。例如铜冰铜中主要是Cu2S和FeS,它们两者所含铜、铁和硫的总和常占冰铜总量的80%~95%,所以Cu、Fe、S三种元素可以说是铜冰铜的基本成分,即Cu-Fe-S三元系实际上可以代表冰铜的组成。通过对该三元系状态图的研究,对铜冰铜的性质、理论成分、熔点等性质可有较详细的了解。任务实践冶金原理精品课程Cu-Fe-S三元系状态图如图4-5所示。由于Cu-FeS-S部分的相图在1473K~1573K和1×101325Pa条件下,对火法炼铜造硫熔炼没有意义,所以图中只绘出了Cu-Cu2S-FeS-Fe的梯形部分。冶金原理精品课程这个图初看起来线条很多,其中主要是等温线和液相分层区内不同温度下进行偏晶反应的两液相分层组成的连线。如果把等温线和连线去掉,则得如图4-6所示对Cu-Fe-S三元系(梯形部分)液相面状态图上的面、线、点的意义说明如下:任务实践冶金原理精品课程冶金原理精品课程(1)四个液相面区:Ⅰ—CuE1PP1Cu面,是Cu(Cu固溶体)液相面区,L=Cu固溶体。Ⅱ—FeP1pDKE2Fe面,是Fe(Fe固溶体)的液相面区。L=Fe固溶体。Ⅲ—FeSE2EE3FeS面,是FeS(FeS固溶体)的液相面区,L=FeS固溶体。FeS是构成Cu-Fe-S三元系的Fe-s二元系生成的二元化合物。任务实践冶金原理精品课程Ⅳ(Ⅳ1+Ⅳ2)—Cu2SEFfCu2S及E1PddE1面,是Cu2S(Cu2S固溶体)的液相面区。因被液相分层区所截,故分为两个部分。Cu2S是构成Cu-Fe-S系的Cu-S二元系生成的二元化合物。(2)两个液相分层区:即dDKFfd面区,它由V1与V2两部分组成:V1-dDFfd面区,是析出Cu2S固溶体的初晶区,为L1=L2+Cu2S固溶体,两液相组成由fF及dD线上两对应点表示。V2—DKFD面区,是析出FeS固溶体初晶区,为L1=L2+FeS固溶体,来年感液相组成由KF及KD线上两对应点表示。(3)四条二元共晶液相线:任务实践冶金原理精品课程E1P线,Cu固溶体与Cu2S固溶体共同析出;E2E线,Fe固溶体与FeS固溶体共同析出;E3E线,Cu2S固溶体与FeS固溶体共同析出;Fe及DP线,都是Cu2S固溶体与Fe固溶体共同析出,因被液相分层区所截,故分为两部分。(4)一条二元包晶液相线:P1P线,产生包晶反应L+Fe(固溶体=Cu(固溶体),这是三相包晶反应。任务实践冶金原理精品课程(5)两个四相平衡不变点:E—为三元共晶点,共晶温度为1188K(靠近FeS-Cu2S连线的E3处),LE=Cu2S(固溶体)+FeS(固溶体)+Fe(固溶体)。P—为三元包晶点,析出温度为1358K(靠近Cu角处),Lp+Fe(固溶体)=Cu(固溶体)+Cu2S(固溶体)。图中E点、P点、液相分层区dDKFf是此图的特征标志。因为它们说明了相图上有三元共晶反应,三元包晶反应以及液相分层现象存在。任务实践冶金原理精品课程从以上状态图的介绍可知,液体冰铜基本上是由均匀液相组成的,其中主要是Cu,Fe和S。一般冰铜中硫的含量较按Cu2S和FeS计算的化学量为少,因此不能把冰铜视为Cu2S和FeS的混合物。如果冰铜中的硫含量降低,则溶体可能进入三元系的分层区,并随冰铜组成的不同析出富铁的新相。任务实践冶金原理精品课程任务实践三)Cu-Fe-S三元状态图在熔炼冰铜时的应用1.冰铜的熔点确定了冰铜的理论组成之后,就可方便地自图4-5的等温线中找出其熔点。如冰铜组成位于1015℃(1288K)的等温线上,则其熔点就是1288K。从图中可以看出液相分层区外靠Fe-Cu边的等温线,其温度一般都比靠FeS-Cu2S线的高,故从熔点考虑,冰铜组成应在分层区与FeS-Cu2S线之间,其熔点最底(1188K),在三元共晶点E的的组成上。同时,在两条二元共晶线及其附近,熔点也较低。冶金原理精品课程2.冰铜的成分在三角形S-Cu2S-FeS内的高价硫化物(CuS、FeS2等)不稳定,分解成Cu2S、FeS并析出硫蒸气。所以工厂所产冰铜中的硫含量不超过图中Cu2S-FeS连线之上。若超过了,体系即进入S-Cu2S-FeS内,因此三角形S-Cu2S-FeS部分在冶金过程的温度不是无意义的,图4-5中就省略了。任务实践冶金原理精品课程由于要避免分层现象出现,以得到均匀一致的冰铜溶体,所以冰铜成分应在FeS-Cu2S连线与液相分层区的边界线(fFK)之间的区域,故冰铜成分变化范围由Cu2S变到FeS,其含硫量在20%到36.5%之间(纯Cu2S含S量为20%,纯FeS含S量为36.5%),而铜的含量相应的从79.8%变到0。工厂所产工业冰铜介于10~50%,而经常是20~40%,相应含S量在22~30%,而经常为24~26%。任务实践冶金原理精品课程上述采用的都是冰铜的理论成分,即将冰铜看成由Cu、Fe、S三个成分以纯Cu2S和纯FeS形成组成。但实际上工厂所产冰铜(工业冰铜)还含有其它成分,如Fe3O4及少量Au、Ag、As、Sb、Bi和炉渣等。此外还常含有ZnS、PbS、Ni3S2、CoS等成分。所以在应用图4-5时,首先应把实际冰铜成分换算为理论成分之后,方可应用此图。任务实践冶金原理精品课程另外,Fe3O4熔点高(1800K)其密度(5.18g/cm3)大于炉渣的密度,在熔炼温度下很稳定。当炉内温度下降,或Fe3O4过量时,Fe3O4将夹杂一些冰铜和炉渣而析出,形成冰铜与炉渣之间的中间层,或沉积到炉底形成炉结。形成中间层会影响冰铜和炉渣的分离,形成炉结。则减少炉子的工作容积,影响冰铜的流动和沉降。它主要来源于返回的转炉渣,在氧化气氛下

1 / 52
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功