晶体的x射线衍射

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

波长连续变化(相当于白色光),由电子动能转化而得.波长为一固定的特征值(单色X射线),产生的原因是阴极高速电子打出阳极材料内层电子,外层电子补此空位而辐射出的能量.8.4晶体的x射线衍射8.4.1X射线的产生与晶体的作用X射线的产生(1)白色X射线:特征X射线:能量K系n=3n=2n=1(M层)(L层)(K层)K1K2K1L系LⅠLⅡLⅢ图8-14原子能级以及电子跃迁时产生X射线的情况α1α2K,KK层留下空位后,L层电子进行补位,产生射线K1,K2。M层电子进行补位,产生K1,K2…n=2,l=0,2S1/2n=2,l=1,2P1/2,2P3/2不同的阳极(对阴极)材料,所产生的特征X射线的波长不相同.常用的有铜,铁,钼等金属靶材料.X射线晶体非散射能量转化相干散射(次生衍射继承入射线的位相和波长.晶体衍射线是相干波长)热能光电效应(光电子、荧光X射线)透过(绝大部分)散射不相干散射(反冲电子及波长和方向均改变的次生衍射)X射线与晶体的作用(2)与点阵型式及晶胞内原子分布关联(由晶胞内原子间散射的x射线所决定)衍射的两个要素(3)与晶胞参数关联(由晶胞间散射的X射线所决定)衍射强度:衍射方向:8.4.2衍射方向与晶胞参数晶体衍射方向是晶体在入射X射线照射下产生的衍射X射线偏离入射线的角度.由晶胞间(周期性相联系)散射的X射线的干涉所决定,依据的理论方程有两个:Laue(劳埃)方程:Bragg(布拉格)方程:直线点阵Laue方程的推导OASBPS0a图8-15Laue方程的推导Laue方程(1)要在s方向观察到衍射,两列次生X射线应相互叠加,其波程差必须是波长的整数倍0(coscos)0,1,2,OAPBahhh称为衍射指标cosha0000,=900,900,90hhh0=90时,所以,衍射线是以直线点阵为轴,顶角为的一系列圆锥面(对不同的h).空间点阵可以看成是由三组不平行不共面向量(a,b,c)组成,所以空间点阵的Laue方程为:000coscoscoscos,,0,1,23,coscosahbkhklcl2在Laue方程规定的方向上所有的晶胞之间散射的次生X射线都互相加强,即波程差肯定是波长的整数倍h,k,l称为衍射指标,表示为hkl或(hkl).并不一定互质,这是与晶面指标的区别.X射线与晶体作用时,同时要满足Laue方程中的三个方程,且h,k,l的整数性决定了衍射方程的分裂性,即只有在空间某些方向上出现衍射(也可以这样理解,两个圆锥面为交线,三个圆锥面只能是交点)Laue方程将空间点阵看成是由三组不平行不共面的直线点阵组成.而Bragg方程将空间点阵看成是有一组相互平行的平面所组成.()2sinλ2sinλ2sinλ2sinλ2sinλhklnhklhklhklnhnknlhklhklhkldndndndd面间距dh*k*l*(dhkl),波长,衍射级数n,衍射角hkl=nh*nk*nl*之间的关系Bragg方程(2)dhkl是用衍射指标表示的面间距.Laue方程和Bragg方程都是联系X射线入射方向,波长和点阵常数的关系式Bragg方程的推导:''d(hkl)321d(hkl)PQRP'Q'R'(a)''MBNd(hkl)321(b)图8-16Bragg公式的推引同一晶面上各点阵点散射的X射线相互加强(图a);而相邻晶面散射X射线的波程差(图b)2sinhklhklMBBNd欲使相邻晶面产生的X射线相互加强()2sinhklhkldnA.与光的反射定律的同异并不是任意晶面都能产生反射的(几何光学中无此限制),产生衍射的晶面指标与衍射指标间必须满足:h=nh*k=nk*l=nl*例如:对(110)晶面,只能产生的110,220,330,…等衍射,绝不可能观察到111,210,321等衍射.讨论几何光学中,入射线,法线,反射线在同一平面;此处的入射线,反射线,法线也处在同一平面.相同之处:不同之处:B.hkl的制约sin2hklhklnd对于给定的体系,hkl为一系列分裂的值******2sin2hklhklhklddnnmax2hkld即:只有当2dh*k*l*时才可观察到衍射,否则:若过长,则不能观测到衍射.C.用衍射指标表示的面间距的Bragg方程2sinhklhkldn222hkladhkl222hklhkldadnhkl对立方晶系hklhklhkldddnn2sinhklhkld即(对其它晶系也适用)dhkl为以衍射指标表示的面距,不一定是真实的面间距.2sinhklhkldn8.4.3衍射强度与晶胞中的原子分布强度公式当X射线照射到晶体上,原子要随X射线的电磁场作受迫振动,但核的振动可忽略不计.电子受迫振动将作为波源辐射球面电磁波.在空间某点,一个电子的辐射强度记为Ie,一个原子中,Z个电子的辐射强度:I0'=IeZ2(点原子,将Z个电子集中在一点)实际情况并非点原子,即电子不可能处在空间的同一点(1).前已证明,各晶胞间散射的次生X射线在Laue和Bragg方程规定的方向上都是相互加强的.所以我们只讨论一个晶胞中原子的分布与衍射强度的关系.Ia=Ief2(f为原子散射因子,fZ)①原子散射因子②结构因子Fhkl当晶胞中有N个原子时,这N束次生X射线间发生干涉,其结构是否加强或减弱与原子的坐标及衍射方向有关,满足的公式为:1exp2()NhkljjjjjFfihxkylzfj为第j个原子的散射因子;xj,yj,zj为原子的分数坐标;hkl为衍射指标;Fhkl称为结构因子.Fhkl是复数,其模量|Fhkl|称为结构振幅.8-922121cos2sin2NhkljjjjjNjjjjjFfhxkylzfhxkylz将(8-9)式经常写为:8-10IhklFhlk2或Ihkl=kFhlk2③衍射强度在结构因子中,晶胞的大小和形状以及衍射方向已经隐含在衍射指标中,晶胞中原子种类反映在原子的散射因子中,晶胞中原子的分布由各原子的坐标参数(xj,yj,zj)表达.前面在推导Laue和Bragg方程时,我们都以素晶胞为出发点,即晶胞顶点上的阵点在满足Laue和Bragg方程衍射都是加强的.当为复晶胞时,非顶点上的阵点散射的X射线与顶点上阵点散射的X射线也要发生相互干涉.其结果是,可能加强,也可能减弱,极端情况是使某些按Laue和Bragg方程出现的衍射消失,这种现象称为系统消光.通过系统消光,可推断点阵型式和部分微观对称元素系统消光(2)①体心点阵每个晶胞中两个点阵点,最简单的情况是晶胞只有两个原子(结构基元为一个原子).例如:金属Na为A2型(体心)结构两个原子的分数坐标为(0,0,0),(1/2,1/2,1/2)当h+k+l=偶数时Fhkl=2fNa当h+k+l=奇数时Fhkl=0即当h+k+l=奇数时,hkl的衍射不出现,例如210,221,300,410等衍射系统全部消失.利用(8-9)式1112222()0()[1]ihklhklihklNaNaNaFfefefe1exp2()NhkljjjjjFfihxkylz得()cos()sin()cos()hkliehklihklhkl[1cos()]hklNaFfhkl所以:②面心点阵晶胞中有四个点阵点,最简单的情况是结构基元为1个原子,原子分数坐标为(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)()()()[1][1cos()cos()cos()]ikhihlilkhklFfeeefhkhlkl利用(8-9)式1exp2()NhkljjjjjFfihxkylz当hkl全为奇数或全为偶数时,后三项(i+j)必然全为偶数必有Fhkl=4f当hkl为奇、偶混杂时(两奇一偶或两偶一奇)(h+k)、(h+l)、(k+l)三者之中必有两奇一偶,必有Fhkl=0,|Fhkl|2=0对各种点阵型式的消光规律应该理解为:凡是消光规律排除的衍射一定不出现,但消光规律未排除的衍射也不一定出现.(因为当一个结构基元由多个原子组成时,这一点阵代表的各原子间散射的次生X射线还可能进一步抵消.)金刚石虽然是面心点阵结构,但每个点阵点代表两个碳原子,故金刚石结构中,每个晶胞中有8个碳原子,其分数坐标分别为(0,0,0),(1/2,1/2,0),(0,1/2,1/2),(1/2,0,1/2),(1/4,1/4,1/4),(3/4,3/4,1/4),(3/4,1/4,3/4),(1/4,3/4,3/4),将这些坐标代入(8-9)式得:()()()()(33)(33)(33)22221ihkiklihlhklihklihklihklihklFfeeeeeee例如:金刚石结构提出后4项公因子ei(h+k+l)/2后剩下的因子与前4项相同.因此得到()()()()()()()2()()()()2121111ihklihkiklihlihkiklihlhklihklihkiklihlFfeeeefeeefeeeefFF()()()11ihkiklihlFeee()221ihklFeF1就是面心点阵的结构因子当(hkl)全为偶数时0111)12()(22iinlkhieeeF由于F1=4,F2=2所以Fhkl=8f或|Fhkl|2=64f2所以Fhkl=0当(hkl)奇偶混杂时F1=0,所以,对于金刚石结构而言:当(hkl)奇偶混杂时Fhkl=0h+k+l=4n+2时h+k+l=4n时则h+k+l也为奇数,(h+k)(k+l)(h+l)必全为偶数,令h+k+l=2n+1,则F1=41()()222111ihklniFeei所以2*222(44)(44)32hklhklhklFFFfiiff当(hkl)全为奇数时由此看出,金刚石虽然是立方面心点阵,但是其消光规律却与前所讨论的不同,为什么呢?有一个概念必须搞清楚,我们前面所讲的面心点阵、体心点阵等的消光规律指的是每个点阵点只代表一个等同原子所散射X射线的消光规律.若每个点阵点(结构基元)代表的内容不只一个原子,如上述金刚石或NaCl等,由于结构基元内各个原子所散射的X射线还要相互干涉,因而金刚石结构除了要服从简单的面心点阵结构的消光规律外,还要进一步消光,这在结构因子上表现为多了F2=1+ei(h+k+l)/2这一因子.因此,对各种点阵型式的消光规律应理解为:凡是消光规律排除的衍射绝不会出现,但消光规律未排除的衍射也不一定出现,以面心点阵为例,一定不出现(hkl)三数奇偶混杂的衍射,而只可能出现(hkl)全奇或全偶的衍射,但只是可能而不一定会出现,有时即使出现,其强度也可能很弱,例如,金刚石中,消失了(222)衍射;NaCl中,(hkl)全奇时衍射很弱.在底心点阵结构的晶胞中,含有两个点阵点,最简单情况就代表两个相同原子,其分数坐标分别是(0,0,0),(1/2,1/2,0)将其坐标代入(8-10)式得22222)cos(1)02121(2sin)000(2sin)02121(2cos)000(2coskhflkhflkhflkhflkhfFhkl

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功