13地面观测元素归算至椭球面

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第九讲地面观测元素归算至椭球面形成原因位置规律造成问题椭球面上两点的法线不在同一平面上。纬度高的点对纬度低的点的法截线偏上,反之,则偏下。造成椭球面上几何图形的破裂。BCACBABBBLLL,内容回顾相对法截线1.大地线是一条曲面曲线,该曲线上任意一点的相邻两弧素,位于该点的同一法截面中。2.大地线是一条曲面曲线,该曲线上任意一点的主法线与曲面法线重合。定义内容回顾大地线性质1.大地线是椭球面上两点间的最短线。2.大地线是无数法截线弧素的连线。3.椭球面上的大地线是双重弯曲的曲线。4.大地线一般位于相对法截线之间。内容回顾大地线一、归算的意义和要求二、水平观测方向归算至椭球面三、观测天顶距的归算四、地面观测长度归算至椭球面五、天文经纬度与大地经纬度的关系六、天文方位角与大地方位角的关系5.5.地面观测元素归算至椭球面一、归算的意义和要求点位三维坐标传统大地测量二维一维高程控制网水平控制网H常(L,B)Significanceandrequestofreduction确定水平坐标的流程布设水平控制网一、二等三角点中心标石埋设图一、归算的意义和要求Significanceandrequestofreduction确定水平坐标的流程地面上观测元素布设水平控制网观测水平方向垂直角地面距离天文经纬度天文方位角角度观测天文观测距离观测一、归算的意义和要求Significanceandrequestofreduction确定水平坐标的流程已知坐标(L,B)地面上观测元素布设水平控制网观测平差大地坐标(L,B)推算归算椭球面上的元素水平方向垂直角地面距离大地经纬度大地方位角平面坐标(X,Y)已知坐标(X,Y)高斯平面的元素归算平差推算水平方向垂直角地面距离平面方位角水平方向垂直角地面距离天文经纬度天文方位角通过归算,为在椭球面上的计算提供观测数据。1、归算的意义水平坐标一、归算的意义和要求Significanceandrequestofreduction2、归算的要求1)以椭球面法线为基准线。2)以椭球面为基准面。3)椭球面两点连线用大地线。垂线偏差u本节学习要求理解并掌握各项改正的定义、公式中各符号的含义、量级及应用范围,部分公式要求画图推导。一、归算的意义和要求Significanceandrequestofreduction一、归算的意义和要求二、水平观测方向归算至椭球面三、观测天顶距的归算四、地面观测长度归算至椭球面五、天文经纬度与大地经纬度的关系六、天文方位角与大地方位角的关系5.5.地面观测元素归算至椭球面将水平观测方向归算至椭球面,通常需要进行垂线偏差改正、标高差改正和截面差改正,简称三差改正。1、垂线偏差改正(δ1)(Correctionfordeflectionofthevertical)[定义]地面上以铅垂线为准的水平方向观测值,归算为以椭球面法线为准的水平方向值时,顾及测站点垂线偏差影响所加的改正。Reductionofhorizontaldirectionalobservationstotheellipsoid二、水平观测方向归算至椭球面[图形]1、垂线偏差改正()AmPu11A1Z法线Z1OuOM1RR大地水平面11ORAR弧长的方向值RR111RORAR弧长的方向值RRR11AaK0ANSPZ二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid[图形]1、垂线偏差改正()AmPu11A1Z法线Z1OuOM1RR大地水平面11ORAR弧长的方向值RR111RORAR弧长的方向值RRR11mAaK0AbNSZAP二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid1、垂线偏差改正()AmPu11A1Z法线Z1OuOM1RR大地水平面sincosuu[公式推导]二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid1、垂线偏差改正()1[公式推导]AmPu1A1Z法线Z1OuOM1RR大地水平面1z190zqq在球面三角形中,1MRR在球面三角形中,1MZZqzsincos)sin(11合并得:111cot)sincoscos(sincot)sin(zAAuzAu111tan)cossin(cot)cossin(AAzAA1sin)(sinsinsinzθAuqsincosuu二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid1、垂线偏差改正()1[量级]111tan)cossin(cot)cossin(AAzAAAmPu1A1Z法线Z1OuOM1RR大地水平面1z190zqq什么情况下垂线偏差改正为0?二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid1、垂线偏差改正()1[量级]111tan)cossin(cot)cossin(AAzAAAmPu1A1Z法线Z1OuOM1RR大地水平面1z190zqq为0情况:1)铅垂线与法线重合,0,01u0,1A2)照准点位于面内,OZZ13)照准点位于水平面,0,01二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid1、垂线偏差改正()1[量级]111tan)cossin(cot)cossin(AAzAA一般情况:垂线偏差的量级约几秒到十几秒,而垂直角的量级约为几度,故垂线偏差改正通常约十分之几秒。[应用范围]一、二等三角测量,三四等酌情。AmPu1A1Z法线Z1OuOM1RR大地水平面1z190zqq《规范》规定,水平方向归算时,各项改正要计算到:一等0.001秒二等0.01秒三四等0.1秒二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid1、垂线偏差改正()1[实际计算说明]111tan)cossin(cot)cossin(AAzAA垂线偏差分量ξ、η:查图内插得到测站点至目标点的大地方位角A:概略计算得到照准目标的垂直角α1:野外观测得到AmPu1A1Z法线Z1OuOM1RR大地水平面1z190zqq二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid2、标高差改正(δ2)(Correctionforskewnormals)[定义]地面水平方向观测值,沿法线方向归算至参考椭球面上时,顾及照准点标高,所加的改正称为标高差改正。将水平观测方向归算到椭球面,通常需要进行垂线偏差改正、标高差改正和截面差改正,简称三差改正。二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid[图形]2、标高差改正()2NOBAaKb2AbK2Hb二、水平观测方向归算至椭球面ReductionofhorizontaldirectionalobservationstotheellipsoidNOBAaKb2ABK2Hb1AS2、标高差改正()2[公式推导]NAb21AbS1AN因:11AASAbb12sin视三角形为球面三角形,由正弦定理,可得:bAbSAbb12sinsin二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid2、标高差改正()2290BO2NBAaKb1A2ARbK2HbS2HbbBRRKa2cosBKKRKbaa[公式推导]SAbb12sin)sin(sinsinsin1222121222BBeNBeNBeNOKOKKKabba2NRKa二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid2、标高差改正()2[公式推导])sin(sincossin1221222BBBASeH由大地线微分方程知:2111112coscosMASBMASBB212112212coscossin)(cossinsinMASBBBBBBB2212222cos2sin2BAMeHB90O2NBAaKb1A2ARBK2HbS二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid2、标高差改正()2[量级]2212222cos2sin2BAMeH为0情况:1)照准点在椭球面上,0,022H0,2701809002、、、A2)照准点与观测点同经度或纬度,B90O2NBAaKb1A2ARBK2HbS二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid2、标高差改正()2[量级]2212222cos2sin2BAMeH一般情况:全球最大值为0.75通常为百分之几秒。[应用范围]一、二等三角测量,三四等酌情。B90O2NBAaKb1A2ARBK2HbS《规范》规定,水平方向归算时,各项改正要计算到:一等0.001秒二等0.01秒三四等0.1秒二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid2、标高差改正()2[实际计算说明]2212222cos2sin2BAMeHB90O2NBAaKb1A2ARBK2HbSH2=H2常+ζ2+a2A1:概略计算得到B2:地形图内插得到二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid3、截面差改正(δ3)(Correctionfromnormalsectiontogeodesic)[定义]法截线方向化为大地线方向所加的改正,称为截面差改正。将水平观测方向归算到椭球面,通常需要进行垂线偏差改正、标高差改正和截面差改正,简称三差改正。二、水平观测方向归算至椭球面Reductionofhorizontaldirectionalobservationstotheellipsoid3、截面差改正()3[公式符号含义]112212232sincos12ABNSe[量级]为0情况:照准点与观测点同经度或同纬度,0,2701809001、、、A一般情况:千分之几秒[应用范围]一等三角测量,二至四等不加。《规范》规定,水平方向归算时,各项改正要计算到:一等0.001秒二等0.01秒三四等0.1秒二、水平观测方向归算至椭

1 / 36
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功