热处理相关基础知识

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

金属材料知识金属材料的性能一、物理性能和化学性能金属的物理性能是指金属固有的属性,包括密度、熔点、导热性、导电性、热膨胀性和磁性等。金属的化学性能是指金属在化学作用下所表现的性能,如耐腐蚀性、抗氧化性和化学稳定性等。二、金属的力学性能所谓力学性能是指金属在外力作用时表现出来的性能。力学性能包括强度、塑性、硬度、韧性及疲劳强度等。1、强度:金属材料在静载荷作用下抵抗塑性变形或断裂是能力成为强度,强度大小通常用压力来表示。2、塑性:断裂前金属材料产生永久变形的能力为塑性。塑性指标也是由拉伸试验测得的。常用金属材料拉伸时最大的相对塑性变形是用伸长率和断面收缩率来表示。3、硬度:材料抵抗局部变形,特别是塑性变形、压痕和划痕的能力称为硬度。(1)布氏硬度:布氏硬度值是用球面压痕单位面积上所承受的平均压力来表示。用符号HBS(W)来表示(2)洛氏硬度:洛氏硬度值(HR)是用洛氏硬度相应标尺刻度满量程(100)与残余压痕深度增量(e)之差计算硬度值。4、韧性:金属材料抵抗冲击载荷而不破坏的能力称为韧性。目前,常用一次摆锤冲击弯曲试验来测定金属材料的韧性。5、疲劳强度三、金属的工艺性能工艺性能是指金属材料对不同加工工艺方法的适应能力,包括铸造性能、锻压性能、焊接性能和切削加工性能等。金属材料一般分类方法钢的分类:平炉钢酸性钢①按冶炼方法分转炉钢及碱性钢电炉钢沸腾钢(一般用锰铁脱氧。脱氧不完全。)(感应炉、电渣炉、真镇静钢和半镇静钢(先用锰铁、然后用矽铁、最后用空自耗炉、真空感应炉)铝铁脱氧。是脱氧完全的钢)低碳钢碳钢中碳钢高碳钢②按化学成分分低合金钢锰钢合金钢中合金钢及铬钢高合金钢硅锰钢普通低合金结构钢渗碳钢结构钢碳素结构钢及弹簧钢钢合金结构钢调质钢轴承钢③按用途分碳素工具钢刃具钢工具钢合金工具钢及量具钢高速工具钢模具钢特殊性能钢如不锈钢、耐热钢、耐酸钢、耐热不起皮钢、高电阻合金、磁钢、耐磨钢等退火状态的—亚共析钢、共析钢、过共析钢、莱氏体钢④按金相组织分正火状态的—珠光体钢、贝氏体钢、马氏体钢、奥氏体钢⑤按品质分——普通钢、优质钢、高级优质钢⑥按成型方法分—铸钢、锻钢、热轧钢、冷拔钢金属学基础知识一、纯金属的结构与结晶1、金属的晶体结构金属在固态下都是晶体。金属的性能、塑性变形和热处理相变都与晶体结构有关。金属中最常见的晶格有三钟:体心立方晶格、面心立方晶格、密排六方晶格。晶体缺陷根据几何形态可分为点缺陷、线缺陷和面缺陷三类。2、金属的结晶金属从液体状态转变为固体(晶体)状态的过程叫做金属的结晶。(1)、冷却曲线和过冷现象物质冷却过程中温度和时间的关系曲线叫冷却曲线。金属结晶的冷却曲线可用热分析法测定,其测定过程如下:先将金属熔化并使温度尽可能均匀,然后以一定的速度冷却,记录下温度随时间变化的数据,并将其绘制在温度-时间坐标中,便可获得如图1所示的冷却曲线。由于结晶时放出的结晶潜热补偿了金属向外界散失的热量,冷却曲线上出现了一段水平线,这段水平线所对应是温度就是金属的实际结晶温度。实验表明,金属的实际结晶温度T1总是低于理论结晶温度(平衡结晶温度)T0,这种现象叫做过冷。过冷是结晶的必要条件,T1和T0之间的差值△T叫做过冷度,即△T+T0-T1。(2)、结晶过程结晶过程是形核及晶核长大的过程。3、金属的同素异构转变金属在固态下随温度的改变,由一种晶格转变为另一种晶格的现象,称为同素异构转变。具有同素异构转变的金属有铁、钴、钛、锡、锰等。以不同晶格形式存在的同一金属元素的晶体称为该金属的同素异晶体。铁的同素异构转变可以用下式表示:1394℃912℃δ-Feγ-Feα-Fe(体心立方晶格)(面心立方晶格)(体心立方晶格)二、合金的结构和结晶相:指合金(或纯金属)中具有同一成分、结构、性能,并以界面互相分开的均匀的组成部分。1、合金的相结构根据构成合金的各元素之间的相互作用,合金中的相结构可以分为固溶体和金属化合物两大类型。(1)固溶体当液态合金凝固后,组元之间仍能互相溶解,形成在某种元素的晶格中溶有其它元素原子的相,这种相就称为固溶体。(2)金属化合物2、二元合金状态图合金状态图又称合金平衡图或合金相图,是表示在平衡条件下合金的状态和温度、成分之间的关系图解。它反映了合金系中不同成分的合金在无限缓慢加热或冷却时的组织变化规律,是选择合金成分、分析合金的显微组织、研究合金的性能和制定铸造、锻造、热处理工艺的重要依据。(1)匀晶状态图:两组元在液态和固态都能无限互溶的状态图。这类合金凝固时都从液相结晶出固溶体,这种结晶过程称为匀晶转变。(2)共晶状态图:两组元在液态完全互溶,并具有共晶转变的状态图。共晶转变:在一定温度下,从一定成分的均匀液相中同时结晶出成分一定的两种固相的转变。(3)包晶状态图:两组元在液态时无限互溶,在固态时形成有限固溶体,并且有包晶转变的状态图。包晶转变:在恒温下,一定成分的液相和它所包围的已结晶出来的一定成分的固相作用,形成另一个成分的新固相的转变过程。三、铁—渗碳体相图1、铁—渗碳体相图钢是一定成分范围的铁碳合金,铁碳合金相图表示不同成分的铁碳合金在不同温度下的不同平衡组织,如图Fe-Fe3C相图所示。由Fe-Fe3C相图可以查出一定成分的铁碳合金发生平衡相变的温度,即临界点;可以预测出在不同温度区域发生的相变过程和冷却到常温时可能得到的平衡组织。铁碳合金相图中各特性点说明见表Fe-Fe3C相图中的几个特性点,各特性线说明见表Fe-Fe3C相图中的特性线。根据铁碳合金相图,含碳量小于2.11%为碳钢,大于2.11%为铸铁。根据组织特征,从铁碳合金相图中将铁碳合金按含碳量多少分为七大类:(1)、工业纯铁,含碳量<0.0218%;(2)、共析钢,含碳量0.77%;(3)、亚共析钢,含碳量0.0218%~0.77%;(4)、过共析钢,含碳量0.77%~2.11%;(5)、共晶白口铸铁,含碳量4.30%;(6)、亚晶白口铸铁,含碳量2.11%~4.30%;(7)、过晶白口铸铁,含碳量4.30%~6.69%;2、金属组织金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。渗碳体:碳和铁形成的稳定化合物(Fe3c)。珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c含碳0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。热处理基础知识一、钢在加热时的组织转变在热处理工艺中,钢的加热是为了获得奥氏体。加热时奥氏体的状态、晶粒大小、化学成分及其均匀性等,对于冷却过程中的组织转变和室温是组织与性能,都有显著影响。钢在加热时的主要组织转变:奥氏体的形成及奥氏体晶粒长大。1、奥氏体的形成将钢加热到Ac3或Ac1以上(Ac1为实际加热时P-A的临界点;Ac3为亚共析钢实际加热时,所有铁素体均转变为奥氏体的温度),以获得完全或部分奥氏体组织的操作称为奥氏体化。珠光体向奥氏体转变分为四个阶段:奥氏体晶核的形成、奥氏体晶核的长大、残余渗碳体的溶解和奥氏体成分的均匀化。共析钢中奥氏体形成过程见下图。共析钢中奥氏体形成过程2、奥氏体晶粒长大当珠光体向奥氏体转变刚刚完成时,奥氏体晶粒是比较细小的。这是由于珠光体内铁素体和渗碳体的相界面很多,有利于形成数目众多的奥氏体晶核。不论原来钢的晶粒是粗或是细,通过加热时的奥氏体化,都能得到细小的奥氏体。但是随着加热温度的升高,保温时间的延长,奥氏体晶粒会自发地长大,它是通过晶粒之间的相互吞并来完成的。加热温度越高,保温时间越长,奥氏体晶粒越大。钢在具体加热条件下获得的奥氏体晶粒大小,称为奥氏体的实际晶粒。它的大小对冷却转变后钢的性能有明显的影响。奥氏体晶粒细小,冷却后产物组织的晶粒也细小。细晶粒组织不仅强度、塑性比粗晶粒高,尤其是韧性有明显的提高。因此,钢在加热时,为了得到细小而均匀的奥氏体晶粒,必须严格控制加热温度和保温时间。二、钢在冷却时的组织转变在热处理生产中,加热后钢件的冷却方式有两种:等温冷却和连续冷却。1、过冷奥氏体的等温转变将奥氏体过冷至临界点下某一温度,在此温度等温停留过程中发生的转变,称为过冷奥氏体的等温转变。在临界点下尚未转变的奥氏体,称为过冷奥氏体。将钢经奥氏体化后冷却到相变点以下的温度区间内等温保持时,过冷奥氏体所产生的相变称为等温转变。过冷奥氏体在不同过冷度下的等温转变过程中转变温度、转变时间与转变产物量(转变开始及终了)的关系曲线图称为等温转变图,也称C曲线图或TTT曲线图。由共析钢的等温转变图可知,在A1以上是奥氏体稳定区域。aa’为过冷奥氏体转变的开始线,在转变开始线左方是过冷奥氏体区(这一段时间称为孕育期);bb’为过冷奥氏体转变终了线,在转变终了线右方,转变已经完成,是转变产物区。在图下方有两根水平线,Ms称为上马氏体点约230℃,Mf称为下马氏体点,约-50℃。在图上“C”字曲线拐弯处(约550℃)俗称“鼻子”,此处孕育期最短,过冷奥氏体最不稳定,最容易分解。2、过冷奥氏体的连续冷却时的转变过冷奥氏体连续冷却转变图,是表示在各种不同冷却速度下,过冷奥氏体转变开始和转变终了的温度与时间的关系图解,可简称为连续冷却转变图,或叫做CCT图。利用共析钢的C曲线来分析过冷奥氏体的连续冷却转变,把代表连续冷却的冷却曲线叠画在等温转变图上,见图”在C曲线上估计连续冷却时的组织”,根据它们和C曲线相交的位置,便可大致估计其冷却转变情况。例如,图中冷却速度v1相当于随炉冷却,奥氏体在A1以下附近的温度进行转变,得到较粗片状珠光体;v2相当于在空气中的冷却速度,可估计出它将转变为索氏体;v3相当于在油中的冷却速度,则奥氏体在“鼻子”附近分解一小部分,而其余的奥氏体则转变为马氏体,最后得到托氏体和马氏体的混合组织;v4相当于在水中冷却,它不与C曲线相交,过冷奥氏体来不及分解,便被过冷到Ms以下进行马氏体转变。v临恰好与C曲线的开始转变线相切,是奥氏体不发生分图在C曲线上估计连续冷却时的组织解而全部过冷到Ms以下向马氏体转变的最小冷却速度,即钢在淬火时为抑制非马氏体转变所需的最小冷却速度,称为马氏体临界冷却速度。它是钢材接受淬火能力大小的标志。影响钢材临界冷却速度的主要因素是钢的化学成分,这一特性对于钢的热处理具有非常重要的意义。3、各种因素对过冷奥氏体冷却转变曲线的影响影响过冷奥氏体冷却转变形状位置的因素很多,主要有以下几点。①碳的影响在正常加热条件下,亚共析碳钢的C曲线,随着含碳量的增加向右移;过共析碳钢的C曲线,随着含碳量的增加向左移。故在碳钢中以共析钢过冷奥氏体最稳定。②合金元素的影响除Co以外,所有的合金元素溶入奥氏体之后,都增大其稳定性,使C曲线右移。碳化物形成元素含量较多时,使C曲线的形状发生变化,出现两组曲线。③加热温度和保温时间的影响随着加热温度

1 / 34
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功