应用题的解法很多,以下几种:1)列表法2)图示法3)演示法4)实践法2020/1/191数学设未知数的技巧:1、设直接未知数,即求什么设什么。2、设间接未知数。3、设辅助未知数,即“设而不求”2020/1/192数学在列方程解决实际问题的过程应注意哪些问题?(1)设未知数时,要仔细分析问题中的数量关系,找出题中的已知条件和未知数,一般采用直接设法,有些问题可用间接设法,要注意未知数的单位,不要漏写。(2)找等量关系时,可借助图表分析题中的数量关系,列出两个代数式,使它们都表示一个相等或相同的量。(3)列方程时,要注意方程各项是同类量,单位要一致,方程左右两边应是等量。(4)解出方程的解后,要验证它的合理性,再解释它的意义,并要注意单位。(5)在解决实际问题的过程中,你是怎样判断一个方程的解是否合理?请举例说明。2020/1/193数学5、检查所得的值是否正确和符合实际情形,并写出答案(包括单位名称)。1、弄清题意,用字母(如X)表示问题里的未知数;2、分析题意,找出相等关系(可借助于示意图、表格);3、根据相等关系,列出需要的代数式,从而列出方程;(注意:左右两边单位统一,已知条件都要用上)4、解这个方程,求出未知数的值;2020/1/194数学列一元一次方程解应用题专题专题一、和差倍分问题专题二:利润率问题专题三:储蓄问题专题四:工程问题专题五:行程问题专题六:规律问题专题七:等积变形,比例专题八:浓度问题专题九:鸡兔同笼问题专题十:年龄问题专题十一:数字问题应用举例2020/1/195数学专题一、和差倍分问题:此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。2020/1/196数学例1、甲班有45人,乙班有39人,现在需要从甲、乙两班各抽调一些同学去参加歌咏比赛。如果甲班抽调的人数比乙班多1人,那么甲班剩余的人数恰好是乙班剩余人数的2倍,问从甲、乙两班各抽调了多少人参加歌咏比赛?2020/1/197数学例2、(1)三个连续偶数的和是30,求他们的积。(2)一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的1/7大6,求这个两位数。2020/1/198数学例3、为了把2013年沈阳全运会举办成一届绿色全运会,实验中学和潞河中学的同学积极参加绿化工程的劳动。两校共绿化了4415平方米的土地,潞河中学绿化的面积比实验中学绿化面积的2倍少13平方米,这两所中学分别绿化了多少面积?2020/1/199数学例4、出租汽车4千米起价10元,行驶4千米以后,每千米收费1.2元(不足1千米按1千米计算)。张天和张智要到离学校15千米的博物馆为同学们联系参观事宜。为了尽快到达博物馆,他们想坐出租车,如果他们只有22元,那么,他们乘出租车能直接到达博物馆吗?2020/1/1910数学例5、本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。你知道这个胜了几场?又平了几场吗?2020/1/1911数学用白铁皮做罐头盒,每张铁皮可制造盒身18个,或制造盒底45个,一个盒身与两个盒底配成一套罐头盒。现有180张白铁皮,用多少张制造盒身,多少张制造盒底,可以制成整套罐头盒?练习12020/1/1912数学练习2某城市按以下规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果超过60立方米,超出部分按每立方米1.2元收费,已知,某用户4月份的煤气费平均每立方米0.88元,求该用户4月份应交的煤气费。2020/1/1913数学练习3我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水标准,A城市规定每户每月的标准用水量,不超过标准用水量的部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费。该市张大爷家5月份用水9立方米,需交费16.2元,A城市规定的每户每月标准用水量是多少立方米?2020/1/1914数学解:设该市每户每月用水标准量为x立方米。∵1.2×9=10.8(元)10.816.2∴张大爷家的用水量超出了标准用水量,即x9根据题意得1.2x+(9-x)×3=16.2解这个方程,得x=6答:该市每户每月的标准用水量是6立方米。2020/1/1915数学二、百分率应用题2020/1/1916数学其数量关系是:商品的利润率商品利润商品进价,商品利润=商品售价-商品进价。注意打几折销售就是按原价的十分之几出售。2020/1/1917数学1、打折销售主要内容:利润=售价-进价售价=标价×折数/10利润率=利润/进价×100%例题:一商店把货品按标价的九折出售,仍可获利12.5%,若货品近价为380元,则标价为多少元?例题:一商店经销一种商品,由于进货价格降低了6.4%,使得利润率提高了8个百分点,求原来经销这种商品的利润率.例题:编一道“打折销售”的应用题,并能列方程(1+40%)•80%x-x=270来解答。2020/1/1918数学例1小颖的服装店同时卖出两套服装,每套均为168元,按成本计算,其中一套盈利20%,另一套亏本20%,请你帮小颖算算,在这次买卖中是亏了还是赚了,还是不亏不赚?2020/1/1919数学例2、某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。问这种商品每个的进价、定价各是多少元?2020/1/1920数学例3、商店对某种商品进行调价,按标价的8折出售,此时商品的利润率是10%,此商品进价是1600元,求商品的标价是多少元?2020/1/1921数学2)增长率应用题例1某工厂食堂第三季度一共节煤7400斤,其中八月份比七月份多节约20%,九月份比八月份多节约25%,问该厂食堂九月份节约煤多少公斤?依题意得:x+(1+20%)x+(1+20%)(1+25%)x=7400答:该食堂九月份节约煤3000公斤.(间接设元)解:设七月份节约煤x公斤。则八月份节约煤(1+20%)x公斤,九月份节约煤(1+20%)(1+25%)x公斤x=2000(1+20%)(1+25%)x=30002020/1/1922数学例2、春节前某商场搞促销活动,降价销售,把原定价为3860的彩电以9折优惠出售,但仍可获利25%的利润,那么这种彩电的进价是多少元?2020/1/1923数学例3、某商店在销售商品时,先按进价的150%标价后,为了吸引消费者,再按8折销售,此时每件仍可获利120元,那么商品的进价为多少元?2020/1/1924数学例4、某商品把一个书包按进价提高50%标价,然后再按8折出售,这样商场每卖出一个书包就可盈利8元,这种书包的进价是多少元?若按6折出售,商场还盈利吗?为什么?2020/1/1925数学例5、某商店里某种商品的进价是1000元,标价是2000元,商店要求以利润率不低于20%的价格出售,则售货员最低可以打几折出售此商品?2020/1/1926数学练习1、某商场对顾客实行优惠,规定:⑴一次购物低于200元,不予折扣;⑵一次购物超过200元,但不超过500元的,按标价给予9折优惠;⑶如果一次购物超过500元,按标价给予8.5折优惠;某人去商场购物两次,分别付款168元和430元,如果他合起来一次购买同样的商品,他可以节约多少钱?2020/1/1927数学练习2学校准备添置一批课桌椅,原订购60套,每套100元。店方表示:如果多购可以优惠,结果校方购了72套,每套减价3元,但商店获得同样多的利润,求每套课桌椅的成本是多少?(直接设元)解:设每套课桌椅的成本价为x元。依题意得:60(100-x)=72(100–3–x)x=82答:每套课桌椅的成本是82元。等量关系:60套时总利润=72套时总利润2020/1/1928数学练习3、某商店经销一种商品,由于进货价降低了5%,售出价不变,使得利润率有原来的m%提高到(m+6)%,求m的值。分析:等量关系是售出价不变,两种不同利润率下的售价各如何表示?成本我们可以设为“1”解:(1+m%)=(1–5%)[1+(m+6)%]解得:m=142020/1/1929数学练习4某套女装进价为300元,标价为600元,现要打8折出售,求此时利润为多少钱,利润率为多少?练习5某人以9折优惠价买了一台电脑,省1000元钱,那么买这台电脑实际花了______元钱?练习6某种MP3原来每个480元,降价后每个售价420元,则降价的百分数是________。练习7某商品标价1375元,打8折售出,仍可获利10%,则该商品的进价是_________元。2020/1/1930数学练习8、已知:商店中某个玩具的进价为40元,标价为60元;1.若按标价出售该玩具,则所得的利润及利润率分别是多少?2.若顾客在与店主还价时,店主要保住15%的利润率,则店主出售这个玩具的售价底线是多少元?3.若店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打8.8折的告示,则这个玩具的实际售价是多少元?4.若店主设法将进价降低10%,标价不变,而贴出打8.8折的告示,则出售这个玩具的利润及利润率分别是多少?2020/1/1931数学银行储蓄问题其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。2020/1/1932数学例1:小颖的父母存三年期教育储蓄,三年后取出了5000元钱,你能求出本金是多少吗?2.88六年2.70三年2.25一年教育储蓄利率2020/1/1933数学例2:小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?2020/1/1934数学例35年定期储蓄的年利率为2.88%,若存入5年定期的本金是1000元,请计算存款到期时,应得的本利和是多少?2020/1/1935数学例4、王利到银行存入5年定期的储蓄若干元,到期后一共缴了72元的利息税,若这种储蓄的年利率为2.4%,求王利当初存入银行多少元?2020/1/1936数学例5、小明的父亲到银行存入一笔钱,3年期满后共从银行取出2632元,若这种储蓄的年利率为2.2%,求他当初存入了多少元?2020/1/1937数学例6、李阿姨买了20000元某公司1年的债务,1年后除了20%的利息税之后得到本利和为20800元,请问这种债券的年利率是多少?2020/1/1938数学例7、某人到银行按两种不同的储蓄方式存入了人名币各5000元,一种为3年期的定期存储,另一种为5年期的定期存储,他计算了一下,到期时,他可得税后利息700元;已知:这两种储蓄的年利率之和为4.3%,求这两种储蓄的年利率各是多少?2020/1/1939数学例8、2010年,为了准备小明6年后上大学的学费50000元,他的父母现在就参加了教育储蓄,下面是两种储蓄的方式:1.直接存一个6年期;2.先存一个3年期,3年后将本利和自动转存;已知:三年定期储蓄的年利率为3.24%,六年定期储蓄的年利率为3.60%;你认为哪种储蓄方式开始存入的本金较少?(注:教育储蓄不扣利息税)2020/1/1940数学专题四:工程问题其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。2020/1/1941数学四、工程问题中的数量关系:1)工作效率=工作总量完成工作总量的时间———————————2)工