通信原理第4章无线信道资料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1通信原理2第4章信道3第4章信道信道分类:无线信道-电磁波(含光波)有线信道-电线、光纤信道中的干扰:有源干扰-噪声无源干扰-传输特性不良本章重点:介绍信道传输特性和噪声的特性,及其对于信号传输的影响。44.1无线信道无线信道电磁波的频率-受天线尺寸限制地球大气层的结构对流层:地面上0~10km平流层:约10~60km电离层:约60~400km地面对流层平流层电离层10km60km0km5电离层对于传播的影响反射散射大气层对于传播的影响散射吸收频率(GHz)(a)氧气和水蒸气(浓度7.5g/m3)的衰减频率(GHz)(b)降雨的衰减衰减(dB/km)衰减(dB/km)水蒸气氧气降雨率图4-6大气衰减第4章信道6传播路径地面图4-1地波传播地面信号传播路径图4-2天波传播第4章信道电磁波的分类:地波频率2MHz有绕射能力距离:数百或数千千米天波频率:2~30MHz特点:被电离层反射一次反射距离:4000km寂静区:7视线传播:频率30MHz距离:和天线高度有关(4.1-3)式中,D–收发天线间距离(km)。[例]若要求D=50km,则由式(4.1-3)增大视线传播距离的其他途径中继通信:卫星通信:静止卫星、移动卫星平流层通信:ddh接收天线发射天线传播途径D地面rr图4-3视线传播图4-4无线电中继第4章信道50822DrDhmm505050508222DrDh89图4-7对流层散射通信地球有效散射区域第4章信道散射传播电离层散射机理-由电离层不均匀性引起频率-30~60MHz距离-1000km以上对流层散射机理-由对流层不均匀性(湍流)引起频率-100~4000MHz最大距离600km10第4章信道流星余迹散射流星余迹特点-高度80~120km,长度15~40km存留时间:小于1秒至几分钟频率-30~100MHz距离-1000km以上特点-低速存储、高速突发、断续传输图4-8流星余迹散射通信流星余迹11陆地移动信道陆地移动通信工作频段主要在VHF和UHF频段,电波传播特点是以直射波为主。但是,由于城市建筑群和其他地形地物的影响,电波在传播过程中会产生反射波、散射波以及它们的合成波,电波传输环境较为复杂,因此移动信道是典型的随参信道。12134.2有线信道明线14第4章信道对称电缆:由许多对双绞线组成同轴电缆图4-9双绞线导体绝缘层导体金属编织网保护层实心介质图4-10同轴线15第4章信道光纤结构纤芯包层按折射率分类阶跃型梯度型按模式分类多模光纤单模光纤折射率n1n2折射率n1n27~10125折射率n1n2单模阶跃折射率光纤图4-11光纤结构示意图(a)(b)(c)16损耗与波长关系损耗最小点:1.31与1.55m第4章信道0.70.91.11.31.51.7光波波长(m)1.55m1.31m图4-12光纤损耗与波长的关系174.3信道的数学模型信道模型的分类:调制信道编码信道信息源信源编码信道译码信道编码信道数字调制加密数字解调解密信源译码受信者噪声源编码信道调制信道18信道的数学模型4.3.1调制信道模型调制信道可以用具有一定输入、输出关系的方框来表示。通过对调制信道进行大量的分析研究,发现它具有如下共性:(1)有一对(或多对)输入端和一对(或多对)输出端;(2)绝大多数的信道都是线性的,即满足线性叠加原理;19(3)信号通过信道具有固定的或时变的延迟时间;(4)信号通过信道会受到固定的或时变的损耗;(5)即使没有信号输入,在信道的输出端仍可能有一定的输出(噪声)。20第4章信道调制信道模型式中-信道输入端信号电压;-信道输出端的信号电压;-噪声电压。通常假设:这时上式变为:-信道数学模型f[ei(t)]e0(t)ei(t)n(t)图4-13调制信道数学模型)()]([)(tntefteio)(tei)(teo)(tn)()()]([tetktefii)()()()(tntetkteio21第4章信道因k(t)随t变,故信道称为时变信道。因k(t)与ei(t)相乘,故称其为乘性干扰。因k(t)作随机变化,故又称信道为随参信道。若k(t)变化很慢或很小,则称信道为恒参信道。乘性干扰特点:当没有信号时,没有乘性干扰。)()()()(tntetkteio22一般情况,可以表示为信道单位冲激响应h(t)与si(t)的卷积:so(t)=h(t)*si(t)+n(t)或S(ω)=H(ω)Si(ω)+N(ω)对于信号来说,H(ω)可看成是乘性干扰。如果我们了解h(t)与n(t)的特性,就能知道信道对信号的具体影响。tefi调制信道的等效h(t)23通常信道特性h(t)是一个复杂的函数,它可能包括各种线性失真、非线性失真、交调失真、衰落等。同时由于信道的迟延特性和损耗特性随时间作随机变化,故h(t)往往只能用随机过程来描述。注意!244.3.2编码信道模型编码信道对信号的影响则是将输入数字序列变成另一种输出数字序列。由于信道噪声或其他因素的影响,将导致输出数字序列发生错误,因此输入、输出数字序列之间的关系可以用一组转移概率来表征。25第4章信道二进制编码信道简单模型-无记忆信道模型P(0/0)和P(1/1)-正确转移概率P(1/0)和P(0/1)-错误转移概率P(0/0)=1–P(1/0)P(1/1)=1–P(0/1)P(1/0)P(0/1)0011P(0/0)P(1/1)图4-13二进制编码信道模型发送端接收端26输出的总的错误概率为:Pe=P(0)P(1/0)+P(1)P(0/1)27第4章信道四进制编码信道模型01233210接收端发送端284.4信道特性对信号传输的影响恒参信道的信道特性不随时间变化或变化很缓慢。信道特性主要由传输媒质所决定恒参信道举例:架空明线、电缆、中长波地波传播、超短波及微波视距传播、人造卫星中继、光导纤维以及光波视距传播…恒参信道非时变线性网络信号通过线性系统的分析方法。29恒参信道对信号传输的影响是确定的或者是变化极其缓慢的。因此,其传输特性可以等效为一个线性时不变网络。线性网络的传输特性:幅度频率特性:相位频率特性:~H~30理想恒参信道的冲激响应为h(t)=K0δ(t-td)若输入信号为s(t),则理想恒参信道的输出为r(t)=K0s(t-td)由此可见,理想恒参信道对信号传输的影响是:(1)对信号在幅度上产生固定的衰减;(2)对信号在时间上产生固定的迟延。这种情况也称信号是无失真传输。311.理想恒参信道特性理想恒参信道就是理想的无失真传输信道,其等效的线性网络传输特性为H(ω)=K0e-jωtd(3.2-1)其中K0为传输系数,td为时间延迟,它们都是与频率无关的常数。幅频特性为常数|H(ω)|=K0(3.2-2)相频特性为ω的线性函数φ(ω)=ωtd(3.2-3)相频特性通常还采用群迟延-频率特性来衡量,所谓的群迟延-频率特性就是相位-频率特性的导数3233在实际中,如果信道传输特性偏离了理想信道特性,就会产生失真(或称为畸变)。(1)幅度-频率失真:信道的幅度-频率特性在信号频带范围之内不是常数;(2)相位-频率失真:信道的相位-频率特性在信号频带范围之内不是ω的线性函数。34典型电话信道特性(a)插入损耗~频率特性频率(kHz)(ms)群延迟(b)群延迟~频率特性35第4章信道频率失真:振幅~频率特性不良引起的频率失真波形畸变码间串扰解决办法:线性网络补偿相位失真:相位~频率特性不良引起的对语音影响不大,对数字信号影响大解决办法:同上非线性失真:可能存在于恒参信道中定义:输入电压~输出电压关系是非线性的。其他失真:频率偏移、相位抖动…非线性关系直线关系图4-16非线性特性输入电压输出电压36第4章信道变参信道的影响变参信道:又称时变信道,信道参数随时间而变。变参信道举例:天波、地波、视距传播、散射传播…变参信道的特性:衰减随时间变化时延随时间变化多径效应:信号经过几条路径到达接收端,而且每条路径的长度(时延)和衰减都随时间而变,即存在多径传播现象。下面重点分析多径效应37将多径时延离散化为相同的时延段,称为附加时延,则多径信道的基带信道冲激响应模型:10(,)()(())Nbiiihtttt38第4章信道多径效应分析1:瑞利衰落与频率弥散设发射信号为接收信号为(4.4-1)式中-由第i条路径到达的接收信号振幅;-由第i条路径达到的信号的时延;上式中的都是随机变化的。tA0cosniniiiiitttttttR1100)](cos[)()]([cos)()()(ti)(ti)()(0ttii)(),(),(tttiii39第4章信道应用三角公式可以将式(4.4-1)改写成:(4.4-2)上式中的R(t)可以看成是由互相正交的两个分量组成的。这两个分量的振幅分别是缓慢随机变化的。式中-接收信号的包络-接收信号的相位niniiiiitttttttR1100)](cos[)()]([cos)()(缓慢随机变化振幅缓慢随机变化振幅niniiiiitttttttR1100sin)(sin)(cos)(cos)()()](cos[)(sin)(cos)()(000tttVttXttXtRsc)()()(22tXtXtVsc)()(tan)(1tXtXtcs40第4章信道所以,接收信号可以看作是一个包络和相位随机缓慢变化的窄带信号:结论发射信号为单频恒幅正弦波时,接收信号因多径效应变成包络起伏的窄带信号。即多径传播使信号产生瑞利型衰落;从频谱上看,多径传播使单一谱线变成了窄带频谱,即多径传播引起频率弥散。。41第4章信道多径效应简化分析2:频率选择性衰落设发射信号为:f(t)仅有两条路径,路径衰减相同,时延不同两条路径的接收信号为:Af(t-0)和Af(t-0-)其中:A-传播衰减,0-第一条路径的时延,-两条路径的时延差。求:此多径信道的传输函数设f(t)的傅里叶变换(即其频谱)为F():)()(Ftf42第4章信道(4.4-8)则有上式两端分别是接收信号的时间函数和频谱函数,故得出此多径信道的传输函数为上式右端中,A-常数衰减因子,-确定的传输时延,-和信号频率有关的复因子,其模为)()(Ftf0)()(0jeAFtAf)(00)()(jeAFtAf)1()()()(000jjeeAFtAftAf)1()()1()()(00jjjjeAeFeeAFH0je)1(je2cos2sin)cos1(sincos1122jej43第4章信道按照上式画出的模与角频率关系曲线:曲线的最大和最小值位置决定于两条路径的相对时延差。而是随时间变化的,所以对于给定频率的信号,信号的强度随时间而变,这种现象称为衰落现象。由于这种衰落和频率有关,故常称其为频率选择性衰落。图4-18多径效应2cos2sin)cos1(sincos1122jej44图4-18多径效应第4章信道定义:相关带宽Δf=1/实际情况:有多条路径。设m-多径中最大的相对时延差定义:相关带宽Δf=1/m当信号带宽BΔf时,R(t)波形一定有畸变。引起频率选择性衰落。当信号带宽BΔf时,R(t)时强时弱,与发射单频信号时现象相似。45第4章信道多径效应的影响:多径效应会使数字信号的码间串扰增大。为了减小码间串扰的影响,通常要降低码元传输速率。因为,若码元速率降低,则信号带宽也将随

1 / 72
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功