平抛运动的推论及应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

平抛运动的推论及应用河北袁振卓推论1:做平抛运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为θ,位移与水平的夹角为,贝tanθ=2tan.证明:如图1所示,由平抛运动规律得00yvgtvvtan,002v2gttvgt21xytan所以tan2tan。例1、如图2所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角满足()A、sintanB、costanC、tantanD、tan2tan解析:直接根据推论1,可知正确选项为D.推论2:做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点.证明:如图3所示,B为OA的中点,设平抛物体的初速度为0v,从原点O到A点的时间为t,A点坐标为)0,x(,B点坐标为)0,'x(,则tvx0,gtv,gt21yy2。又'xxyvvtan0y,解得2x'x。即末状态速度方向反向延长线与x轴的交点B必为此刻水平位移OA的中点。例2、如图4所示,将一小球从坐标原点沿着水平轴Ox以0v2m/s的速度抛出,经过一段时间到达P点,M为P点在Ox轴上的投影,作小球轨迹在P点的切线并反向延长,与Ox轴相交于Q点,已知QM=3m,则小球运动的时间为多少?解析:由推论2可知,Q为OM的中点,则从O点运动到P点的过程中,小球发生的水平位移s水平=OM=2QM=6m.由于水平方向做匀速直线运动,则小球在这段过程中运动的时间为t=3s.推论3:任意时刻的两个分运动的速度与合运动的速度构成一个矢量直角三角形.例3、从空中同一点沿水平方向同时抛出两个小球,它们的初速度方向相反,大小分别为1v和2v,求经过多长时间两小球速度之间的夹角为90°?解析:设两个小球抛出后经过时间t它们速度之间的夹角为90°,与竖直方向的夹角分别为α和β,对两小球分别构建速度矢量直角三角形,如图5所示,根据图可得:gtvtan,vgtcot21①又因为tancot,90所以②由①②得gtvvgt21,所以21vvg1t。推论4:任意一段时间内两个分运动的位移与合运动的位移构成一个矢量直角三角形.例4、如图6甲所示,小球a、b分别以大小相等、方向相反的初速度从三角形斜面的顶点同时水平抛出,已知两斜面的倾角分别为1和2,求小球a、b落到斜面上所用的时间之比?(设三角形斜面足够长)解析:根据推论4作出此时的位移矢量直角三角形如图6乙所示,对a有:0aa02a1v2gttvgt21tan①对b有:0bb02b2v2gttvgt21tan②由①②得21batantantt。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功