《简明生物化学与分子生物学》学习指导与习题集陈晓光《简明生物化学与分子生物学》(周慧主编)是教育部制药工程专业教学指导分委员会组织编写的高等学校制药工程专业系列教材之一,全书由20章组成,分为四个部分:第一部分从第一章至第五章,主要为生物大分子的结构与性质,包括蛋白质、酶、核酸、糖类和脂质的结构与性质;第二部分从第六章至第九章,主要为物质代谢,介绍了蛋白质、核酸、糖类和脂质的分解与合成代谢;第三部分从第十章至第十五章,主要内容是分子生物学,包括原核生物和真核生物染色体结构与DNA复制、基因的转录与转录活性的调节、蛋白质生物合成机制与调节;第四部分从第十六章至第二十章,为分子生物学实验方法,包括核酸的分离纯化、基因重组技术、聚合酶链反应、核酸测序和核酸的分子杂交。为了帮助学生更好地理解和掌握教材,我们编写了配套的学习指导用书。本学习指导与习题集在内容上按教材编排章节顺序编写,每章内容包括五个部分:学习目标、学习内容纲要、学习要点、“习题练习”、“参考答案”组成。“学习目标”以“掌握”、“熟悉”、“了解”三个不同层次要求学习每章内容,加强理解,可作为教学大纲要求。“学习内容纲要”简要介绍每章学习内容概要。“学习要点”概括介绍每章需要重点学习掌握的基本概念、主要内容、相互联系。包括一些生物大分子的分类,结构特点,重要的理化性质,酶学研究的动力学特征;重要的物质代谢途径,关键酶,代谢通路的生理意义;遗传分子生物学中心法则,DNA、RNA、蛋白质生物合成的各自体系组成及其功能,主要的合成过程及特点,基因重组操作的基本原理及过程等。“习题练习”分为“选择题”、“填空题”、“判断题”、“名词解释”及“问答题”等多种形式,主要根据教材内容、大纲要求进行设计,以帮助学生学习理解教材内容,并有助于记忆。全部习题均有相应“参考答案”,便于学习者复习或自学。本书适用于制药工程专业本科生学习巩固所学知识和考研复习,也可作为相关学科学生、教师的教学参考用书。绪论一、生物化学的的概念:生物化学(biochemistry)是运用化学的理论和技术,研究生物体的物质组成与结构、物质代谢与能量转变,以及与生理功能之间关系的一门科学。生物化学(biochemistry),即生命的化学,是利用化学的原理与方法去探讨生命的一门科学,是一门研究生物体的化学组成、体内发生的反应和过程的学科。当代生物化学的研究揭示组成生物体的物质,特别是生物大分子(biomacromolecules)的结构规律,并且与细胞生物学、分子遗传学等密切联系,研究和阐明生长、分化、遗传、变异、衰老和死亡等基本生命活动的规律。二、分子生物学的概念:Watson和Crick于1953提出了DNA分子的双螺旋结构模型,在此基础上形成了遗传信息传递的“中心法则”,由此奠定了现代分子生物学(molecularbiology)的基础。分子生物学主要研究生物体所含基因的结构、复制和表达,以及基因产物—蛋白质或RNA的结构,互相作用以及生理功能。总之,生物化学与分子生物学是在分子水平上研究生命奥秘的学科,代表当前生命科学的主流和发展的趋势。三、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。四、生物化学研究的主要内容:1.生物大分子的结构与功能2.物质代谢及其调节3.基因信息的传递1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。5.基因信息的传递遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。五、«生物化学与分子生物学»与药学学科的关系及其在制药工业中的重要性生物化学与分子生物学是药学学科重要的理论基础,药学生物化学与分子生物学是研究与药学科学相关的生物化学与分子生物学理论、原理与技术及其在药物研究、药品生产、药物质量控制与临床应用的基础学科。它从分子水平研究生命现象本质,是研究疾病,研究药物治病原理不可缺少的基础。生物化学与分子生物学理论及其技术的发展与现代药学科学的发展具有越来越来密切的联系,是中药学的有效成分分离纯化研究、药物化学的新药设计研究、药理学的生化机理研究、生物药剂学的代谢研究的重要理论基础。生物化学与分子生物学的进展,为新药的发现提供了理论、概念、技术和方法,使药学科学步入一个新的发展阶段,其特点是以化学模式为主体的药学科学迅速转向以生物学和化学相结合的新模式。因此生物化学与分子生物学在当代药学科学发展中起到了先导作用。生物化学与分子生物学在当代制药工业发展中起到了重要作用,以分子生物学DNA重组技术为基础发展起来的生物制药工业开创了制药工业一个新门类。作为制药工程专业学生,学习生物化学与分子生物学主要是学习与药学相关较紧密领域的知识,包括生物化学与分子生物学的基础理论及技术,为今后学习其它各有关药学专业的课程奠定基础。第一部分生物大分子第一章蛋白质[学习目标]1、掌握:氨基酸和肽的基本结构、蛋白质的结构与功能。2、熟悉:蛋白质分离纯化的方法及原理。3、了解:蛋白质一级结构的测定方法,蛋白质的结构与功能的关系;生理活性肽。[学习内容纲要]1、氨基酸的结构与性质2、肽键3、生理活性肽4、蛋白质分离和纯化的方法及原理5、蛋白质的结构与功能√[学习要点]第一节、氨基酸的结构与性质1.氨基酸的概念:氨基酸(aminoacid)是蛋白质分子的基本结构单位。构成蛋白质分子的氨基酸共有20种,这些氨基酸都是L-构型的α-氨基酸。2.氨基酸分子的结构通式:3、氨基酸分类:按带电荷情况可分为三类:①侧链不带电荷氨基酸:非极性中性氨基酸(8种)(Ala、Val、Leu、Ile、Met、Pro、Phe、Trp);极性中性氨基酸(7种)(Gly、Ser、Thr、Cys、Tyr、Asn、Gln);②带负电荷氨基酸2种(酸性氨基酸Asp、Glu);③带正电荷氨基酸3种(碱性氨基酸His、Arg、Lys)。4、氨基酸构型(结构特点):构成蛋白质分子的20种氨基酸,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。5、氨基酸的等电点氨基酸不带电荷时,溶液的pH值称为该氨基酸的等电点,以pI表示。氨基酸不同,其等电点也不同。也就是说,等电点是氨基酸的一个特征值。6、氨基酸的茚三酮反应如果把氨基酸和茚三酮一起煮沸,除脯氨酸和羟脯氨酸显黄色外,其它氨基酸都显深浅不同的紫色。氨基酸与茚三酮的反应,在生化中是特别重要的,因为它能用来定量测定氨基酸。7、非蛋白质氨基酸除了蛋白质中常见的20种氨基酸及相应的衍生氨基酸外,还有200多种氨基酸以游离或结合的形式存在于生物界,但并不是蛋白质的组成成分,这些氨基酸统称为非蛋白质氨基酸,如β-丙氨酸,鸟氨酸等。第二节、肽键:1、肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基以共价键偶联形成肽,其间的化学键称为肽键(peptidebond),也叫酰胺键(-CO-NH-)。2、氨基酸残基:氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。3、肽键平面(肽单位):肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。4、肽(peptide)是氨基酸通过肽键相连的化合物。肽按其组成的氨基酸数目为2个、3个和4个等不同而分别称为二肽、三肽和四肽等,多肽和蛋白质的区别是多肽中氨基酸残基数较蛋白质少,一般少于50个,而蛋白质大多由100个以上氨基酸残基组成,但它们之间在数量上也没有严格的分界线。第四节、蛋白质的分离和纯化1、蛋白质的分离、提纯一般程序:一般的蛋白质需要在细胞破碎后用适当溶剂(如水、稀盐溶液、缓冲液等)将蛋白质溶解出来,再用离心法除去不溶物得到含有目的物的粗抽提液。从总体上来讲,分离纯化蛋白质在对材料进行前处理后需要用沉淀法进行初步分离,之后再以层析或电泳法得到所需的蛋白质产物。(图1-6)(1)前处理:细胞破碎、离心;(2)初分离:沉淀法;(3)精制:层析、电泳。图1-6分离纯化蛋白质程序示意图在提纯蛋白质过程中需要在每一步检测蛋白质(酶)的存在及提纯的情况,即建立蛋白质定量检测方法。2、盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。蛋白质的等电点概念:蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。pH值在等电点以上,蛋白质带负电,在等电点以下,则带正电。溶液的pH在蛋白质的等电点处蛋白质的溶解度最小。蛋白质的有机溶剂沉淀:凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。3、层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有:(1)离子交换层析原理:根据被分离物蛋白质分子所带电荷不同,使用不同离子交换剂,将蛋白质分子分离开;(2)凝胶过滤层析原理:凝胶过滤也叫分子筛层析。它主要是利用具有网状结构的凝胶的分子筛作用,根据被分离物蛋白质分子的大小不同来进行分离的。其中凝胶层析可用于测定蛋白质的分子量。(3)亲和层析原理:利用蛋白质分子与其它生物分子间所具有的专一性亲和力而设计的层析技术。4、电泳原理:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。SDS-PAGE电泳原理:SDS-PAGE是一种电泳方式,该法是采用去污剂即十二烷基磺酸钠使蛋白质变性后进行的一种电泳(SDS:十二烷基磺酸钠SodiumdodecylSulfate;PAGE:聚丙烯酰铵凝胶电泳polyacrylamidegelelectrophoresis)。(1)绝大多数蛋白质都能与SDS分子结合,由于SDS带有负电荷,大量的SDS负电荷屏蔽了蛋白质本身所具有的电荷,因此经SDS处理后的蛋白质都具有负电荷,向正极移动。(2)SDS-PAGE完全是基于凝胶过滤效应分离蛋白质,不同分子量的蛋白质形成不同的区带。(3)此外,由于SDS干扰了蛋白质亚基间疏水相互作用,所以在SDS-PAGE中多亚基蛋白质分离成单亚基形式存在。在凝胶上蛋白质的迁移率与分子量的对数呈线性关系,因此,可用该法测定蛋白质的分子量,其准确率为5~10%。5.超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。6.透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。第五节、蛋白质的结构与功能:一、蛋白质的生物功能:生物催化、机械支撑作用、运输与贮存、协调、免疫保护、生长与分化调控、细胞信号转导、物质跨膜运输、电子传递等。二、蛋白质的分子结构:可为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。蛋白质分子的一级结构是形成空间结构的物质基础.1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其