第十八章平行四边形平行四边形及其性质(一)一、教学目标1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、理解两条平行线的距离的概念4、培养学生综合运用知识的能力二、重点难点和关键重点:平行四边形的概念和性质1和性质2难点:平行四边形的性质1和性质2的应用三、教学过程复习1、什么是四边形?四边形的一组对边有怎样的位置关系?2、一般四边形有哪些性质?3、平行线的判定和性质有哪些?新课讲解1、引入在四边形中,最常见、价值最大的是平行四边形,如推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?2、平行四边形的定义:(1)定义:两组对边分别平行的四边形叫做平行四边形。(2)几何语言表述∵AB∥CDAD∥BC∴四边形ABCD是平行四边形(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。(4)平行四边形的表示:用符号表示,如ABCD3、平行四边形的性质(1)共性:具有一般四边形的性质(2)特性:(板书)角平行四边形的对角相等边平行四边形的对边相等推论夹在两条平行线间的平行线段相等4、两条平行线的距离(定义略)注意:(1)两相交直线无距离可言(2)与两点的距离、点到直线的距离的区别与联系5、例题讲解教材P132例1已知:如图A'B'∥BA,B'C'∥CB,C'A'∥AC.求证:(1)∠ABC=∠B',∠CAB=∠A',∠BCA=∠C'.(2)△ABC的顶点分别是△B'C'A'各边的中点.说明:(1)引导学生利用平行四边形的性质(2)师生通过讨论共同写出解题过程6、巩固练习:(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。(2)在平行四边形ABCD中,∠A=∠B+240,求∠A的邻角的度数。(3)平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。(4)在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。(5)如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE(6)如图,在平行四边形ABCD中,AE=CF,求证AF=CEB’A’C’ABC图(5)EDCBA图(6)FEDCBA小结1、平行四边形的概念。2、平行四边形的性质定理及其应用。3、两条平行线的距离。4、学法指导:在条件中有“平行四边形”你应该想到什么?作业:教材P1412(1)、(2)3、4。平行四边形及其性质(二)教学目的:1、知道平行四边形、两条平行线间的距离的概念;会说出并熟记平行四边形对角相等,对边相等的性质。2、会度量两条平行线间的距离;会利用平行四边形对边相等,对角相等的性质进行有关的论证和计算。3、在由点到直线的距离来定义两条平行线间的距离的过程中,让学生感受知识之间的联系和发展,培养灵活应用所学知识解决问题的能力4、渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点5、培养观察、分析、归纳、概括能力.教学重点:两条平行线间的距离的概念平行四边形的进行有关的论证和计算。教学难点:探索、寻求解题思路.教学方法:讨论法、启发法、发现法、自学法、练习法、类比法教学过程:1复习:四边形的内角和、外角和定理?平行四边形的性质定理的内容2.讲解练一练:课本例1后练习第1、2题。说明和建议:要求学生在解答时先画出图形,写出应用平行四边形性质定理求解的过程猜一猜:如图4.3-3,∥,线段AB∥CD∥EF,且点A、C、E在上,B、D、F在上,则AB、CD、EF的大小相等吗?为什么?还能画出与AB等长的线段吗?试一试可以画出几条?说明和建议:学生不难猜得结论并加以证明,让学生经历合情推理到逻辑推理的思维过程。学生通过画图可以进一步感知:夹在两条平行线间的平行线段相等。问题:如图4.3-3中,线段AB、CD、EF都与直线垂直,那么又可以得到什么结论?说明与建议:学生由AB∥CD∥EF,得到AB=CD=EF。教师接着可指出:这说明夹在平行线间的垂线段相等。然后,引导学生理解两平行线间的距离的意义,即一条直线上的任一点到另一条直线的距离。量一量:在图4.3-4中,AB∥CD,量出AB与CD之间的距离。建议:要求学生先画出表示AN、CD间距离的线段,再量出它的长度。例题解析例:(即课本例1)说明:(1)因为图中的平行线段多,因此可引导学生用“化繁为简”的方法,从图4.3-5(l)中分解出图(2)、(3)、(4)。(2)在例中的第2小题,还可以用平行四边形性质定理2的推论来证明,证明如下:∵A′B′∥BA,BA′∥AC,∴BA′=AC′(夹在两条平行线间的平行线段相等)。∵BC∥B′C′,AC∥BC′,∴AC=BC′(夹在两条平行线间的平行线段相等)。∴B′A=BC′.∴点B是A′C′的中点。同理可证C′A=B′A,B′C=A′C。∴点A、C分别是B′C′和A′B′的中点。课堂小结:(师生合作总结)目前,关于平行四边形的知识中,由平行四边形,我们可以得到哪些隐含的条件?(关于边和角的关系)(跟踪练习)1、在平行四边形ABCD中,AC交BD于O,则AO=OB=OC=OD。()2、平行四边形两条对角线的交点到一组对边的距离相等。()3、平行四边形的两组对边分别。(创新练习)平行四边形的对角线和它的边,可以组成()对全等三角形。(A)2(B)3(C)4(D)6(达标练习)1、已知O是平行四边形ABCD的对角线的交点,AC=24mm,BD=38mm,AD=28mm,求三角形OBC的周长。2、如图,平行四边形ABCD中,AC交BD于O,AE⊥BD于E,∠EAD=60°,AE=2cm,AC+BD=14cm,求三角形BOC的周长。3、已知:如图,平行四边形ABCD的一边AB=25cm,对角线AC、BD相交于点O,三角形AOB的周长比三角形BOC的周长少10cm,求平行四边形ABCD的周长。(综合应用练习)1、平行四边形的一条对角线与边垂直,且此对角线为另一边的一半,则此平行四边形两邻角的度数之比为()(A)1∶5(B)1∶4(C)1∶3(D)1∶2平行四边形的性质及判定(复习课)教学目的:1、深入了解平行四边形的不稳定性;2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。教学重点:平行四边形的性质和判定。教学难点:性质、判定定理的运用。教学程序:一、复习创情导入平行四边形的性质:边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。角:对角相等(定理1);邻角互补。平行四边形的判定:边:两组对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)二、授新1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:2、自学质疑:自学课本P79-82页,并提出疑难问题。3、分组讨论:讨论自学中不能解决的问题及学生提出问题。4、反馈归纳:根据预习和讨论的效果,进行点拨指导。5、尝试练习:完成习题,解答疑难。6、深化创新:平行四边形的性质:边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。角:对角相等(定理1);邻角互补。平行四边形的判定:边:两组对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)7、推荐作业1、熟记“归纳整理的内容”;2、完成《练习卷》;3、预习:(1)矩形的定义?(2)矩形的性质定理1、2及其推论的内容是什么?(3)怎样证明?(4)例1的解答过程中,运用哪些性质?思考题1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已知求证;2、如何证明性质定理3的逆命题?3、有几种方法可以证明?4、例2的证明中,运用了哪些性质及判定?是否有其他方法?5、例3的证明中,运用了哪些性质及判定?是否有其他方法?跟踪练习1、在四边形ABCD中,AC交BD于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。()2、在四边形ABCD中,AC交BD于点O,若OC=且,则四边形ABCD是平行四边形。3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(C)两条邻边相等;(D)对角线互相平分。创新练习已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)达标练习1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD交于F。求证:四边形AECF是平行四边形。2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN。综合应用练习1、下列条件中,能做出平行四边形的是()(A)两边分别是4和5,一对角线为10;(B)一边为4,两条对角线分别为2和5;(C)一角为600,过此角的对角线为3,一边为4;(D)两条对角线分别为3和5,他们所夹的锐角为450。推荐作业1、熟记“判定定理3”;2、完成《练习卷》;3、预习:(1)“平行四边形的判定定理4”的内容是什么?(2)怎样证明?还有没有其它证明方法?(3)例4、例5还有哪些证明方法?平行四边形的判定(二)一、教学目的和要求使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系。二、教学重点和难点重点:掌握平行四边形的判定定理;难点:灵活恰当地运用判定定理。三、教学过程(一)复习、引入提问:1.平行四边形有什么性质?2.我们学习了哪些平行四边形的判定定理?我们学习了利用“边”的条件来判定一个四边形是平行四边形,它是平行四边形边的性质定理的逆定理。那么平行四边形的对角及对角线的性质定理的逆命题是否成立呢?(二)新课平行四边形的判定定理3:两组对角分别相等的四边形是平行四边形。已知:如图1,四边形ABCD中DB,CA。求证:四边形ABCD是平行四边形。ABCD图1分析:四边形的内角和是360,又知道对角相等,容易由同旁内角互补来证明两组对边分别平行。证明由学生完成。平行四边形的判定定理4:对角线互相平分的四边形是平行四边形。已知:如图2,四边形ABCD中,对角线AC、BD交于O点,且OCAO,ODBO。求证:四边形ABCD是平行四边形。BACDO图2分析、证明都可由学生讨论完成,最后指出用一组对边平行且相等来判定最为方便。例1已知:如图3,E、F是平行四边形ABCD对角线AC上两点,且AE=CF。求证:四边形BFDE是平行四边形。BAOCDEF图3分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E、F在对角线上,显然用对角线互相平分来判定。证明:连结BD交AC于O。是平行四边形四边形即平行四边形ABCDOFEOCFOCAEAOCFAEODOB,OCOAABCD(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFBAED,DFCABE用对边相等或平行来判定平行四边形,相比之下使用对角线较简便。例2已知:如图4,DBCADBBFDE,ACBF,ACDE。且求证:四边形ABCD是平行四边形。2DA1EBFC图4分析:1.由于DBCADB,所以AD//BC,只要再证AD=BC即可。2.由于DE平行且等于BF,可证DB与EF互相平分,但要使DB与AC互相平分,还需证AE=CF。经过比较两种证法,第一种较简便。证明:BC//ADDBCADB是平行四边形。