历年-高考-物理-力学-压轴题-经典题-精选汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

仅供个人参考不得用于商业用途Forpersonaluseonlyinstudyandresearch;notforcommercialuse2001—2008届高考物理压轴题分类汇编一、力学2001年全国理综(江苏、安徽、福建卷)31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H11、He42等原子核组成。维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H11→He42+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H11核组成。(1)为了研究太阳演化进程,需知道目前太阳的质量M。已知地球半径R=6.4×106m,地球质量m=6.0×1024kg,日地中心的距离r=1.5×1011m,地球表面处的重力加速度g=10m/s2,1年约为3.2×107秒。试估算目前太阳的质量M。(2)已知质子质量mp=1.6726×10-27kg,He42质量mα=6.6458×10-27kg,电子质量me=0.9×10-30kg,光速c=3×108m/s。求每发生一次题中所述的核聚变反应所释放的核能。(3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w=1.35×103W/m2。试估算太阳继续保持在主序星阶段还有多少年的寿命。(估算结果只要求一位有效数字。)参考解答:(1)估算太阳的质量M设T为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知①地球表面处的重力加速度2RmGg②由①、②式联立解得③以题给数值代入,得M=2×1030kg④(2)根据质量亏损和质能公式,该核反应每发生一次释放的核能为△E=(4mp+2me-mα)c2⑤代入数值,解得△E=4.2×10-12J⑥(3)根据题给假定,在太阳继续保持在主序星阶段的时间内,发生题中所述的核聚变反应的次数为pmMN4×10%⑦因此,太阳总共辐射出的能量为E=N·△E设太阳辐射是各向同性的,则每秒内太阳向外放出的辐射能为仅供个人参考不得用于商业用途ε=4πr2w⑧所以太阳继续保持在主序星的时间为Et⑨由以上各式解得以题给数据代入,并以年为单位,可得t=1×1010年=1百亿年⑩评分标准:本题28分,其中第(1)问14分,第(2)问7分。第(3)问7分。第(1)问中,①、②两式各3分,③式4分,得出④式4分;第(2)问中⑤式4分,⑥式3分;第(3)问中⑦、⑧两式各2分,⑨式2分,⑩式1分。2003年理综(全国卷)34.(22分)一传送带装置示意如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间T内,共运送小货箱的数目为N。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均抽出功率P。参考解答:以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有s=1/2at2①v0=at②在这段时间内,传送带运动的路程为s0=v0t③由以上可得s0=2s④用f表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A=fs=1/2mv02⑤传送带克服小箱对它的摩擦力做功A0=fs0=2·1/2mv02⑥两者之差就是克服摩擦力做功发出的热量Q=1/2mv02⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。T时间内,电动机输出的功为W=PT⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W=1/2Nmv02+Nmgh+NQ⑨已知相邻两小箱的距离为L,所以v0T=NL⑩联立⑦⑧⑨⑩,得P=TNm[222TLN+gh]仅供个人参考不得用于商业用途2004年全国理综25.(20分)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物。在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动。现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m,锤在桩帽以上高度为h处(如图1)从静止开始沿竖直轨道自由落下,打在质量为M(包括桩帽)的钢筋混凝土桩子上。同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短。随后,桩在泥土中向下移动一距离l。已知锤反跳后到达最高点时,锤与已停下的桩幅之间的距离也为h(如图2)。已知m=1.0×103kg,M=2.0×103kg,h=2.0m,l=0.20m,重力加速度g=10m/s2,混合物的质量不计。设桩向下移动的过程中泥土对桩的作用力F是恒力,求此力的大小。25.锤自由下落,碰桩前速度v1向下,ghv21①碰后,已知锤上升高度为(h-l),故刚碰后向上的速度为)(22lhgv②设碰后桩的速度为V,方向向下,由动量守恒,21mvMVmv③桩下降的过程中,根据功能关系,FlMglMV221④由①、②、③、④式得])(22)[(lhhlhMmlmgMgF⑤代入数值,得5101.2FN⑥2005年理综(四川、贵州、云南、陕西、甘肃)25.(20分)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A。求男演员落地点C与O点的水平距离s。已知男演员质量m1和女演员质量m2之比m1/m2=2秋千的质量不计,秋千的摆长为R,C点低5R。202121)(21)(vmmgRmm解:设分离前男女演员在秋千最低点B的速度为v0,由机械能守恒定律,设刚分离时男演员速度的大小为v1,方向与v0相同;女演员速度的大小为v2,方向与v0相反,由动量守恒,2211021)(vmvmvmm分离后,男演员做平抛运动,设男演员从被推出到落在C点所需的时间为t,根据题给条件,由运动学规律,2214gtRtvx1,根据题给条件,女演员刚好回A点,由机械能守恒定律,222221vmgRm,已知m1=2m2,由以上各式可得x=8R2006年全国理综(天津卷)25.(22分)神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。天文学家观测河外星系麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期。(1)可见得A所受暗星B的引力FA可等效为位于O点处质量为m/的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2。试求m/的(用m1、m2表示);仅供个人参考不得用于商业用途(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量mI的两倍,它将有可能成为黑洞。若可见星A的速率v=2.7m/s,运行周期T=4.7π×104s,质量m1=6mI,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×1011-N·m/kg2,mI=2.0×1030kg)解析(1)设A、B的圆轨道半径分别为r1、r2,由题意知,A、B做匀速圆周运动的角速相同,其为ω。由牛顿运动运动定律,有FA=m1ω2r1FB=m2ω2r2FA=FB设A、B之间的距离为r,又r=r1+r2,由上述各式得r=1212mmrm①由万有引力定律,有FA=G122mmr将①代入得FA=G3122212()mmmmr令FA=G121/mmr比较可得3212()/=mmmm②(2)由牛顿第二定律,有/211211mmvGmrr③又可见星A的轨道半径r1=2vT④由②③④式可得(3)将m1=6mI代入⑤式,得33222(6)2ImvTmmG⑤代入数据得32223.5(6)IImmmm⑥设m2=nmI,(n>0),将其代入⑥式,得仅供个人参考不得用于商业用途322223.56(6)(1)IIImnmmmmn⑦可见,3222(6)Immm的值随n的增大而增大,试令n=2,得20.1253.56(1)IIInmmmn⑧若使⑦式成立,则n必须大于2,即暗星B的质量m2必须大于2mI,由此得出结论:暗星B有可能是黑洞。2006年全国理综(重庆卷)25.(20分)(请在答题卡上作答)如题25图,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为R41,碰撞中无机械能损失。重力加速度为g。试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。解析:(1)由mgR=4mgR+4mgR得β=3(2)设A、B碰撞后的速度分别为v1、v2,则设向右为正、向左为负,解得v1=12gR,方向向左v2=12gR,方向向右设轨道对B球的支持力为N,B球对轨道的压力为N/,方向竖直向上为正、向下为负。则N-βmg=22vmRN/=-N=-4.5mg,方向竖直向下(3)设A、B球第二次碰撞刚结束时的速度分别为V1、V2,则解得:V1=-2gR,V2=0(另一组:V1=-v1,V2=-v2,不合题意,舍去)由此可得:当n为奇数时,小球A、B在第n次碰撞刚结束时的速度分别与第一次碰撞刚结束时相同当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与第二次碰撞刚结束时相同2008年(四川卷)题25图仅供个人参考不得用于商业用途25.(20分)一倾角为θ=45°的斜血固定于地面,斜面顶端离地面的高度h0=1m,斜面底端有一垂直于斜而的固定挡板。在斜面顶端自由释放一质量m=0.09kg的小物块(视为质点)。小物块与斜面之间的动摩擦因数μ=0.2。当小物块与挡板碰撞后,将以原速返回。重力加速度g=10m/s2。在小物块与挡板的前4次碰撞过程中,挡板给予小物块的总冲量是多少?25.(20分)解法一:设小物块从高为h处由静止开始沿斜面向下运动,到达斜面底端时速度为v。由功能关系得sincos212hmgmvmgh①以沿斜面向上为动量的正方向。按动量定理,碰撞过程中挡板给小物块的冲量)(vmmvI②设碰撞后小物块所能达到的最大高度为h’,则sincos212hmghmgmv③同理,有sincos212hmgvmhmg④)(vmvmI⑤式中,v’为小物块再次到达斜面底端时的速度,I’为再次碰撞过程中挡板给小物块的冲量。由①②③④⑤式得kII⑥式中tantank⑦由此可知,小物块前4次与挡板碰撞所获得的冲量成等比级数,首项为)cot1(2201ghmI⑧总冲量为)1(3214321kkkIIIIII⑨由)11112kkkkknn⑩得)cot1(221104ghmkkI⑾代入数据得)63(43.0IN·s⑿解法二:设小物块从高为h处由静止开始沿斜面向下运动,小物块受到重力,斜面对它的摩擦力和支持力,小物块向下运动的加速度为a,依牛顿第二定律得mamgmgcossin①设小物块与挡板碰撞前的速度为v,

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功