初中数学课程内容的构成新课题宁县中村初中教者:韩兴宁运用乘方知识完成下列各题。(1)多个相同因数积的运算叫做____,乘方的结果叫做____,即a×a×···×a写成乘方的形式为:_____,其中a叫____,n叫_____,an读作_____。(2)x3表示___个___相乘,把x3写成乘法的形式为:x3=_________。n个a乘方幂an底数指数A的n次方3XX·X·Xan底数指数幂1015·103一种电子计算机每秒可进行1015次运算,它工作103秒一共可进行多少次运算?你能根据乘方的意义算出下列式子的结果吗?(写成幂的形式)(2)a3·a2(1)25×22(3)5m·5n=27这几道题有什么共同的特点呢?计算的结果有什么规律吗?(1)25×22=a5(3)5m·5n=5m+n(2)a3·a2=(a·a·a)(a·a)=(2×2×2×2×2)×(2×2)=(5×5×···×5)×(5×5×···×5)m个5n个5=25+2=a3+2想一想am·an=m个an个a=aa···a=am+n(m+n)个a(aa···a)(aa···a)(乘方的意义)(乘法结合律)(乘方的意义)当m,n为正整数时,am·an=?一般地,如果m,n都是正整数,那么am·an=am+nam·an=am+n(m、n都是正整数)同底数幂相乘,底数,指数。不变相加同底数幂的乘法公式:请你尝试用文字概括这个结论。运算运算方法(乘法)(底不变、指相加)幂的底数必须相同,相乘时指数才能相加。(底数相同)条件(1)b5·b=()(2)10·102·103=()(3)-a2·a6=()(4)y2n·yn+1=()(5)x5·()=x8(6)a·()=a6(7)x·x3()=x7(8)xm·()=x3m八年级数学第十四章整式的乘法争分夺秒x3a5x3x2mb6106-a8y3n+1火眼金睛(1)b5·b5=2b5()(2)b5+b5=b10()(3)x5·x5=x25()(4)y5·y5=2y10()(5)c·c3=c3()(6)m+m3=m4()m+m3=m+m3b5·b5=b10b5+b5=2b5x5·x5=x10y5·y5=y10c·c3=c4××××××(-2)4×(-2)3-24×(-2)3七十二变(-a)4×a5(-a)3×a2-53×(-5)2(a-b)2·(b-a)5(1)长方形地块的长为105m,宽为104m,则面积为______m2(2)已知:an-3×a2n+1=a10,则n=_____(3)光速约为3×105千米/秒,一颗恒星发出的光需要6年才能到达地球,若一年以3×107秒计算,这颗恒星距离地球要多远?(4)如果am=2,an=8,求am+n的值。(6)如果2n=2,2m=8,则3n×3m=____.同底数幂相乘,底数指数am·an=am+n(m、n正整数)我学到了什么?知识积累过程方法“特殊→一般→特殊”例子公式应用不变,相加。数学思想转化思想逆用法则课外思考1、已知(x-y)5=6,(y-x)2=4,求(x-y)7的值。2、若(am+1bn+2)·(am+1bn+2)=a5b3,求m+n的值。