圆中常见的辅助线的作法分类大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共5页OCBA1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。或者连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。作用:1、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。例:如图,AB是⊙O的直径,PO⊥AB交⊙O于P点,弦PN与AB相交于点M,求证:PM•PN=2PO2.分析:要证明PM•PN=2PO2,即证明PM•PC=PO2,过O点作OC⊥PN于C,根据垂经定理NC=PC,只需证明PM•PC=PO2,要证明PM•PC=PO2只需证明Rt△POC∽Rt△PMO.证明:过圆心O作OC⊥PN于C,∴PC=21PN∵PO⊥AB,OC⊥PN,∴∠MOP=∠OCP=90°.又∵∠OPC=∠MPO,∴Rt△POC∽Rt△PMO.∴POPCPMPO即∴PO2=PM•PC.∴PO2=PM•21PN,∴PM•PN=2PO2.【例1】如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。【例2】如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,那么OP的长的取值范围是_________.【例3】如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________.第2页共5页OCBAOCBA2.遇到有直径时常常添加(画)直径所对的圆周角。作用:利用圆周角的性质,得到直角或直角三角形。例如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.分析:要证BA·BM=BC·BN,需证△ACB∽△NMB,而∠C=90°,所以需要△NMB中有个直角,而BN是圆O的直径,所以连结MN可得∠BMN=90°。(1)证明:连结MN,则∠BMN=90°=∠ACB∴△ACB∽△NMB∴BNABBMBC∴AB·BM=BC·BN(2)解:连结OM,则∠OMC=90°∵N为OC中点∴MN=ON=OM,∴∠MON=60°∵OM=OB,∴∠B=21∠MON=30°∵∠ACB=90°,∴AB=2AC=2×3=6【例4】如图,AB是⊙O的直径,AB=4,弦BC=2,∠B=3.遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。作用:利用圆周角的性质,可得到直径。【例5】如图,AB、AC是⊙O的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O的半径是5.遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)(2)常常添加连结圆上一点和切点作用:1、可构成弦切角,从而利用弦切角定理。2、利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。BMNOCA第3页共5页【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,求证:AC=CD.6.遇到证明某一直线是圆的切线时切线判定分两种:公共点未知作垂线、公共点已知作半径切线的判定定理是:“经过半径的外端,并且垂直于这条半径的直线是圆的切线.”,就是说,要判定一条直线是否是切线,应同时满足这样的两条:(1)直线经过半径的外端,(2)直线垂直于这条半径,所以,在证明直线是切线时,往往需要通过作恰当的辅助线,才能顺利地解决问题.下面是添辅助线的小规律.1.无点作垂线需证明的切线,条件中未告之与圆有交点,则联想切线的定义,过圆心作该直线的垂线,证明垂足到圆心的距离等于半径.例7.已知:如图,AB是⊙O的直径,AD⊥AB于A,BC⊥AB于B,若∠DOC=90°.求证:DC是⊙O的切线.分析:DC与⊙O没有交点,“无点作垂线”,过圆心O作OE⊥DC,只需证OE等于圆的半径.因为AO为半径,若能证OE=OA即可.而OE、OA在△DEO、△DAO中,需证明△DEO≌△DAO证明:作OE⊥DC于E点,取DC的中点F,连结OF.又∵∠DOC=90°.∴FO=FD∴∠1=∠3.∵AD⊥AB,BC⊥AB,∴BC∥AD,∴OF为梯形的中位线.∴OF∥AD.∴∠2=∠3.∴∠1=∠2.∴DO是∠ADE的角平分线.∵OA⊥DA,OE⊥DC,∴OA=OE=圆的半径.∴DC是⊙O的切线.2.有点连圆心.当直线和圆的公共点已知时,联想切线的判定定理,只要将该点与圆心连结,再证明该半径与直线垂直.例8.已知:如图,AB为⊙O的直径,BC为⊙O的切线,切点为B,OC平行于弦AD,求证:CD是⊙O的切线.分析:D在⊙O上,有点连圆心,连结DO,证明DO⊥DC即可.证明:连结DO,∵OC∥AD∴∠DAO=∠COB,∠ADO=∠DOC而∠DAO=∠ADO∴∠DOC=∠COB,又OC=OC,DO=BO∴△DOC≌△BOC∴∠ODC=∠OBC,∵BC为⊙O的切线,切点为B∴∠OBC=90°,∴∠ODC=90°,又D在⊙O上,∴CD是⊙O的切线.【例7】如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。求证:直线L与⊙O相切。第4页共5页【例8】如图,△ABO中,OA=OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F.求证:AB是⊙O切线;7.遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③全等、相似三角形。【例9】如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________8.遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段。作用:利用内心的性质,可得:①内心到三角形三个顶点的连线是三角形的角平分线;②内心到三角形三条边的距离相等。【例10】如图,△ABC中,∠A=45°,I是内心,则∠BIC=【例11】如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.9.遇到三角形的外接圆时,连结外心和各顶点作用:外心到三角形各顶点的距离相等。[课后冲浪]1.已知:P是⊙O外一点,PB,PD分别交⊙O于A、B和C、D,且AB=CD.求证:PO平分∠BPD.ABCDEPO..第5页共5页2.如图,ΔABC中,∠C=90°,圆O分别与AC、BC相切于M、N,点O在AB上,如果AO=15㎝,BO=10㎝,求圆O的半径.3.已知:□ABCD的对角线AC、BD交于O点,BC切⊙O于E点.求证:AD也和⊙O相切.4.如图,学校A附近有一公路MN,一拖拉机从P点出发向PN方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A周围100米以内受到噪音影响,问:当拖拉机向PN方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒?5.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,求阴影部分的面积.我们可以把圆中常用辅助线的规律总结为如下歌诀:弦与弦心距,密切紧相连;直径对直角,圆心作半径;已知有两圆,常画连心线;.遇到相交圆,连接公共弦;遇到相切圆,作条公切线;“有点连圆心,无点作垂线.”切线证明法,规律记心间...ACBMNo

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功