圆柱测试一、选一选。(将正确答案的序号填在括号里,每小题2分)1、下面物体中,()的形状是圆柱。A、B、C、D、3、下面()图形是圆柱的展开图。(单位:cm)4、下面()杯中的饮料最多。5、一个圆柱有()条高。A、一B、二C、三D、无数条6、一个圆柱的侧面展开以后正好是一个正方形,那么圆柱的高等于它的底面()。A.半径B.直径C.周长D.面积7.压路机滚筒滚动一周能压多少路面是求滚筒的()A、表面积B、侧面积C、体积8、一个棱长4分米的正方体木块削成一个最大的圆柱体,圆柱体的体积是()立方分米。A、50.24B、100.48C、649,圆柱体的底面半径扩大3倍,高不变,体积扩大()A、3倍B、9倍C、6倍10,求长方体,正方体,圆柱体的体积共同的公式是()A、V=abhB、V=a3C、V=Sh二、填空(每空3分)1、将一张长12.56厘米,宽9.42厘米的长方形纸卷成一个圆柱体,圆柱体的体积是()立方厘米。2、一个圆柱体的侧面展开后,正好得到一个边长25.12厘米的正方形,圆柱体的高是()厘米。3、有一个圆柱形罐头盒,高是1分米,底面周长6.28分米,盒的侧面商标纸的面积最大是()平方分米,这个盒至少要用()平方分米的铁皮。4、用一张长4.5分米,宽1.2分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。(接口处不计)三、判断(每小题2分)1、圆柱的体积一般比它的表面积大。()2、底面积相等的两个圆柱,体积也相等。()3、两个圆柱的体积相等那么它们的表面积也相等。()4,圆柱体的侧面积等于底面积乘高。()5、圆柱两底面之间的距离处处相等。()四、计算题。计算下列圆柱的表面积和体积。(16分)(1)底面半径是5分米,高20厘米。(2)底面的周长是12.56分米,高3分米。五、解决问题。1、压路机的滚筒是一个圆柱形,它的宽是1、5米,滚筒横截面的半径是0、6米,以每分钟滚动5周计算,这台压路机每小时可压路多少米?每小时压路的面积是多少平方米?(8分)2、一个会议大厅有6根同样的圆柱形木柱,每根高4米,底面周长1.5米,如果每千克油漆可以漆4.5平方米,漆这些木柱需要多少千克?(8分)3.一个圆柱形水池,底面直径20米,深2米,在它的侧面和底部抹上水泥,(1)抹水泥部分的面积是多少平方米?(4分)(2)水池内最多可储存多少吨水?(每立方米水重1吨)(4分)4、一个圆柱形容器的底面直径是20厘米,水深18厘米,把一块铁放入这个容器后,水深23厘米,这块铁的体积是多少立方厘米?(7分)5、把一根长4米的圆柱形的钢材截成相等的两段以后,表面积增加了0.28平方分米,如果每立方分米钢材重7.8千克,这根钢材重多少千克?(8分).内容结构特点本章是在学生对一元一次方程已有认识的基础上,从一个篮球联赛中的问题入手,引导学生直接用x和y表示两个未知数,并进一步表示问题中的两个等量关系,得到两个相关的二元一次方程,由此得到二元一次方程(组)的概念,然后,研究用代入消元法和加减消元法解二元一次方程组,并用此解决实际问题。2.本章知识结构图3.教材的地位及作用本章是在研究一元一次方程的基础上,以实际问题为背景对一次方程及其解法的探索,是数学建模思想在数学中的具体应用,其中的消元思想是解方程的基本思想,它对研究高等数学具有重要作用。4.教学重点和教学难点教学重点:以方程组为工具分析问题、解决含有多个未知数的问题教学难点:以方程组为工具分析问题、解决含有多个未知数的问题5.教学目标(1)以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型.(2)了解二元一次方程及其相关概念,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系.(3)了解解二元方程组的基本目标(使方程组逐步转化为x=a,的形式),体会“消元”思想,掌握解二元一次方程组的代入法和加减法,能根据二元一次方程组的具体形式选择适当的解法.(4)通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程(见下图),体会数学的应用价值,提高分析问题、解决问题的能力.6.教学建议(1)注意在对方程已有认识的基础上发展,做好从一元到多元的转化本章从一个篮球联赛中的胜负场数问题开始讨论,其中含有两个未知数.在此之前学生已经学习过一元一次方程的内容,用代数方法解决上述问题有两种不同方法:一种方法是设一个未知数为,并用含有的式子表示另一个未知数,根据问题中的等量关系列出一元一次方程;另一种方法是直接设两个未知数和,根据问题中的等量关系列出两个二元一次方程,由它们组成方程组.比较这两种方法,可以发现,第一种方法的难点在于“列”,第二种方法的难点在于“解”.由于列一元一次方程时要综合考虑问题中的各等量关系,因此有一定难度,但是学生已经熟悉一元一次方程的解法;列二元一次方程组时可以分别考虑两个等量关系,分别列出两个方程,一般说这比将这个问题列成一个一元一次方程容易,但是由于方程中出现两个未知数,因此如何解方程组成为新问题.用方程组是新方法,这种方法对于解含有多个未知数的问题很有效,并且它的优越性会随着问题中未知数个数的增加体现得更明显.二元一次方程组是方程组中最基本的类型,通过学习它可以了解一般的一次方程组,提高对多元问题的认识.本章学习中,应注意所学内容与前面有关内容的联系与区别,明确本章内容的特点,做好从“一元”向“多元”的转化.(2)关注实际问题情景,体现数学建模思想现实中存在大量问题涉及多个未知数,其中许多问题中的数量关系是一次(也称线性)的,这为学习“二元一次方程组”提供了大量的现实素材.在本章教科书中,实际问题情境贯穿于全章,对方程组解法的讨论也是在解决实际问题的过程中进行的,“列方程组”在本章中占有突出地位.在本章的教学和学习中,要充分注意二元一次方程组的现实背景,通过大量丰富的实际问题,反映出方程组来自实际又服务于实际,加强对方程组是解决现实问题的一种重要数学模型的认识.本章明确提出“方程组是解决含有多个未知数问题的重要数学工具”,并在多处体现方程组在解决实际问题中的工具作用,实际上这就是在渗透建立模型的思想.设未知数、列方程组是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的多种等量关系是设未知数、列方程组的基础.在本章的教学和学习中,可以从多种角度思考,借助图形、表格、式子等进行分析,寻找等量关系,检验方程的合理性.教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用二元一次方程组分析解决它们.(3)重视解多元方程组中的消元思想本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程组这个过程中蕴涵的符号化、模型化的思想,这已在上面进行了讨论;另一个是解方程组的过程中蕴涵的消元化归思想,它在解方程组中具有指导作用.解二元一次方程组的各个步骤,都是为最终使方程组变形为x=a,的形式而实施的,即在保持各方程的左右两边相等关系的前提之下,使“未知”逐步转化为“已知”.解多元方程组的基本策略是“消元”,即逐步减少未知数的个数,以至使方程组化归为一元方程,先解出一个未知数,然后逐步解出其他未知数.代入法和加减法都是消元解方程组的方法,只是具体消元的手法有所不同.在本章的教学和学习中,不能仅仅着眼于具体题目的具体解题过程,而应不断加深对以上思想方法的领会,从整体上认识问题的本质.(4)加强学习的主动性和探究性设计本章教科书的内容和结构时,比较注意加强学习的主动性和探究性.本章内容涉及许多实际问题,多彩的问题情境容易激起学生对数学的兴趣.在本章的教学中,应注意引导学生从身边的问题研究起,主动收集寻找“现实的、有意义的、富有挑战性的”问题作为学习材料,并更多地进行数学活动和互相交流,在主动学习、探究学习的过程中获得知识,培养能力.(5)注重对于基础知识的掌握,提高基本能力本章中二元一次方程组的基本概念和消元解法是基础知识,通过列、解二元一次方程组分析解决实际问题是基本能力,它们对于今后进一步学习有重要作用.教学和学习中应注意打好基础,切实掌握基本方法,并力求能够较灵活地运用它们,逐步培养提高基本能力.