§3留数在定积分中的应用.便地计算某些实积分利用留数定理可以很方的积分形如20dR)sin,(cos.13要求两条:数相关;被积函数与某个解析函)1.)闭路的积分实积分可以化为沿某个2.sin,cos)sin,(cos的有理函数为Rdiedzezii.,20.)(coszzeeii21212zizeeiii21212)(sindzizzzzzRdRz12212121),()sin,(cos20izzzzzRzf1212122),()(令在单位圆周上无奇点,如果)(zf为在单位圆内的孤立奇点则),,,,(nkzk21dzizzzzzRdRz12212121),()sin,(cos20nkkzzfsi12]),([Re的积分形如20dR)sin,(cos.13.sin,cos)sin,(cos的有理函数为Rdiedzezii.,20.)(coszzeeii21212zizeeiii21212)(sindzizzzzzRdRz12212121),()sin,(cos20nkkzzfsi12]),([Re).(coscos.10212132pdppI20计算例diedzezii.,20.)(cos242221212zzeeii由于解.)cos()(cos01212122pppp.所以积分有意义dzizpzzpzzIz1222241221121)(dzpzpzizzIz1241121))((ppzpzpzizzzf10112124,,))(()(有三个极点ppzpzpzizzzf10112124,,))(()(的三个极点.,,为一级极点为二级极点,在单位圆内,pzzpz00222420211210ipppzpzizzzzfsz)))(((lim]),([Re)()))(()(lim]),([Re224240121121pipppzpzizzpzpzfsz])),([Re]),([(Repzfszfsi02I2212pp椭圆积分.)(.的积分形如-dxxR23要求的有理函数为,)(xxR.)(在实轴上无奇点)作为复变量函数(zR2!子的次数高两次)分母的次数至少比分(1))(222112211nmbzbzbzazazazzRmmmmnnnn())(nkzzRk1,2,(为在上半平面的孤立奇点设RoRkz2z1zyxnkkRRCzzRsidzzRdxxRdxxRR12]),([Re)()()(--))(211122112211nmzbzbzbzazazazzRmmnnnm(,102211.nnzazaza.充分大时,可以做到z102211.mmzbzbzb22211221121011011111zzzbzbzbzazazazzRnmmmnnnm..)()()()(RRRdszRdzzRRRCC022))()((lim)(RRCRRdzzRdxxRdxxR--nkkzzRsi12]),([ReRoRkz2z1zyx).,()((.)babadxbxaxx002322222I-计算例解.,24nm).,()(()()0022222babzazzzf.,,且均为一级极点为在上半平面的孤立奇点bizaiz21)()))()(()(lim]),([Re2222202baiabzaizaizzaizaizfsz)()))()(()(lim]),([Re2222202abibazbizbizzbizbizfszbaaizfsaizfsiI])),([Re]),([(Re2.)(.的积分形如-dxexRiax33要求的有理函数为,)(xxR!次子的次数高)分母的次数至少比分(11.)(在实轴上无奇点)作为复变量函数(zR2(若当定理)定理1.3Dzg在闭区域设函数)(上连续zRz02100,arg为半径的圆弧点为中心,是该区域上的一段以原RRC有则对任意的时,有如果当,,)(lim00azgDzz.)(lim0RCiazzdzezgRCx12yoDRoRkz2z1zyx))(nkzzRk1,2,(为在上半平面的孤立奇点设.全部位于其中画半圆使孤立奇点kznkkiazRRCiaziaxzezRsidzezRdxexRR12],)([Re)()(-由留数定理,)(,0zRR如果.)(lim0RCiazzdzezRnkkiazRRiaxzezRsidxexR12],)([Re)(-nkkiazRRiaxzezRsidxexR12],)([Re)(-RRRRaxdxxRiaxdxxR--sin)(cos)(nkkiazzezRsi12],)([Re).(sin.03322adxaxxxI0计算例解)()(,)(sin)(0022RzRzRazzzzR在实轴上没有奇点,设.)(aizR极点上半平面只有一个一级],)([ReaiezRsidxaxxeizix222-aaiziazieeiiaziazzeiazi222))(()(lim---dxaxxxidxaxxxdxaxxeix222222sincosaizeiaiezRsi],)([Re2aedxaxxxdxaxxx022222sinsin-2022aedxaxxxIsin022-dxaxxxcos综合举例43.解..是一级极点入手从0zzeiz.sin)(0zzzzR在实轴上有奇点0RrixrRixcizcizdxxedxxezdzezdzerR-.sin.0dxxxI计算例43点!所构造的闭路上没有奇上面提到的积分要求在用挖奇点的方法!闭路上有奇点时可以采.sinsin-0dxxxdxxxI21!在闭路上可以挖去奇点rRixdxxe-txrRitdtterRitdtteRritdtteRRrrRCrCx0RrixixcizcizdxxeezdzezdzerRRrRrixixdxxxidxxeesin2xieeixixsin20RcizRzdzelim由若当引理知)!)(!)(!)((nizizizizzzeniz321132)!)(!)(!)((nizizizizzzeniz321132)(!!!zznzizizizzenniz132112inziziziznn)(,!!!)(03212总可以做到!充分小时,当2)(zz)()()(()(lim00200rrdzzdzzdzzrrrcccrirediredzzzdzzdzeiircrcrcizrrrr00000lim)(limlimlim00RrixixicizcizdxxeezdzezdzerRRrdxxxisin2200RrRrdxxxdxxxsinlimsini.cossin.221532200dxxdxx证明例.420dxex已知解2222izixexixe考虑,sincosoBARCRDxy02CizdzeBOCOACR022220dzedzedzedzeBOizCizRixCizR40222dRieedzeieiRCiziRRixdze02222222222sincos)sin(cosRiRiiReiReeei2222224222RRRiReiReeeeisinsincos40222dRieedzeieiRCiziR0142222240440)(RRieiRCizeRdeRdRieedzeiR404042222iRriRieirBOizedreedreedzeidredzrezii44,:BORrdre02)(RdreRr202022220dzedzedzedzeBOizCizRixCizR)(limiedzedzeiBOizRixR122224022.cossin2212200dxxdxx