surf算法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1SURF:SpeededUpRobustFeaturesInthissection,theSURFdetector-descriptorschemeisdiscussedindetail.Firstthealgorithmisanalysedfromatheoreticalstandpointtoprovideadetailedoverviewofhowandwhyitworks.Nextthedesignanddevelopmentchoicesfortheimplementationofthelibraryarediscussedandjusti ed.Duringtheimplementationofthelibrary,itwasfoundthatsomeofthe nerdetailsofthealgorithmhadbeenomittedoroverlooked,soSection1.5servestomakecleartheconceptswhicharenotexplicitlyde nedintheSURFpaper[1].1.1IntegralImagesMuchoftheperformanceincreaseinSURFcanbeattributedtotheuseofanintermediateimagerepresentationknownasthe\IntegralImage[18].Theintegralimageiscomputedrapidlyfromaninputimageandisusedtospeedupthecalculationofanyuprightrectangulararea.GivenaninputimageIandapoint(x;y)theintegralimageIPiscalculatedbythesumofthevaluesbetweenthepointandtheorigin.Formallythiscanbede nedbytheformula:IP(x;y)=ixXi=0jyXj=0I(x;y)(1)Figure1:AreacomputationusingintegralimagesUsingtheintegralimage,thetaskofcalculatingtheareaofanuprightrectangularregionisreducedfouroperations.IfweconsiderarectangleboundedbyverticesA,B,CandDasinFigure1,thesumofpixelintensitiesiscalculatedby:X=A+D(C+B)(2)Sincecomputationtimeisinvarianttochangeinsizethisapproachisparticularlyusefulwhenlargeareasarerequired.SURFmakesgooduseofthispropertytoperformfastconvolutionsofvaryingsizebox ltersatnearconstanttime.1.2Fast-HessianDetector1.2.1TheHessianTheSURFdetectorisbasedonthedeterminantoftheHessianmatrix.InordertomotivatetheuseoftheHessian,weconsideracontinuousfunctionoftwovariablessuchthatthevalueofthefunctionat(x;y)isgivenbyf(x;y).TheHessianmatrix,H,isthematrixofpartialderivatesofthefunctionf.H(f(x;y))=@2f@x2@2f@x@y@2f@x@y@2f@y2#(3)Thedeterminantofthismatrix,knownasthediscriminant,iscalculatedby:det(H)=@2f@x2@2f@y2@2f@x@y2(4)Thevalueofthediscriminantisusedtoclassifythemaximaandminimaofthefunctionbythesecondorderderivativetest.SincethedeterminantistheproductofeigenvaluesoftheHessianwecanclassifythepointsbasedonthesignoftheresult.Ifthedeterminantisnegativethentheeigenvalueshavedi erentsignsandhencethepointisnotalocalextremum;ifitispositivetheneitherbotheigenvaluesarepositiveorbotharenegativeandineithercasethepointisclassi edasanextremum.Translatingthistheorytoworkwithimagesratherthanacontinuousfunctionisafairlytrivialtask.Firstwereplacethefunctionvaluesf(x;y)bytheimagepixelintensi-tiesI(x;y).Nextwerequireamethodtocalculatethesecondorderpartialderivativesoftheimage.AsdescribedinSection??wecancalculatederivativesbyconvolutionwithanappropriatekernel.InthecaseofSURFthesecondorderscalenormalisedGaussianisthechosen lterasitallowsforanalysisoverscalesaswellasspace(scale-spacetheoryisdiscussedfurtherlaterinthissection).WecanconstructkernelsfortheGaussianderiva-tivesinx,yandcombinedxydirectionsuchthatwecalculatethefourentriesoftheHessianmatrix.UseoftheGaussianallowsustovarytheamountofsmoothingduringtheconvolutionstagesothatthedeterminantiscalculatedatdi erentscales.Further-more,sincetheGaussianisanisotropic(i.e.circularlysymmetric)function,convolutionwiththekernelallowsforrotationinvariance.WecannowcalculatetheHessianmatrix,H,asfunctionofbothspacex=(x;y)andscale.H(x;)=Lxx(x;)Lxy(x;)Lxy(x;)Lyy(x;)#;(5)HereLxx(x;)referstotheconvolutionofthesecondorderGaussianderivative@2g()@x2withtheimageatpointx=(x;y)andsimilarlyforLyyandLxy.ThesederivativesareknownasLaplacianofGaussians.WorkingfromthiswecancalculatethedeterminantoftheHessianforeachpixelintheimageandusethevalueto ndinterestpoints.ThisvariationoftheHessiandetectorissimilartothatproposedbyBeaudet[2].Lowe[9]foundperformanceincreaseinapproximatingtheLaplacianofGaussiansbyadi erenceofGaussians.Inasimiliarmanner,Bay[1]proposedanapproximationtotheLaplacianofGaussiansbyusingbox lterrepresentationsoftherespectivekernels.Figure2illustratesthesimilaritybetweenthediscretisedandcroppedkernelsandtheirbox ltercounterparts.Considerableperformanceincreaseisfoundwhenthese ltersareusedinconjunctionwiththeintegralimagedescribedinSection1.1.Toqauntifythedi erencewecanconsiderthenumberofarrayaccessesandoperationsrequiredintheconvolution.Fora99 lterwewouldrequire81arrayaccessesandoperationsfortheoriginalrealvalued lterandonly8forthebox lterrepresentation.Asthe lterisincreasedinsize,thecomputationcostincreasessigni cantlyfortheoriginalLaplacianwhilethecostforthebox ltersisindependentofsize.Figure2:LaplacianofGaussianApproximation.TopRow:ThediscretisedandcroppedsecondorderGaussianderivativesinthex,yandxy-directions.WerefertotheseasLxx,Lyy,Lxy.BottomRow:WeightedBox lterapproximationsinthex,yandxy-directions.WerefertotheseasDxx,Dyy,DxyInFigure2theweightsappliedtoeachofthe ltersectionsiskeptsimple.Theblackregionsareweightedwithavalueof1,thewhiteregionswithavalueof-1andtheremainingareasnotweightedatall.Simpleweightingallowsforrapidcalculationofareasbutinusingtheseweightsweneedtoaddressthedi erenceinresponsevaluesbetweentheoriginalandapproximatedkernels.Bay[1]proposesthefollowingformulaasanaccurateapproximationfortheHessiandeterminantusingtheapproximatedGaussia

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功