第1页共13页附件2继续教育学院毕业论文题目:小跨吊桥设计学生姓名:余炳锐考籍号:923915200047班级:海南自考专业:交通土建工程指导教师:薛世英陶化龙刘力赵可培2015年12月第2页共13页附件(封首):(题目)小跨吊桥设计学生姓名:余炳锐考籍号:923915200047站点:启开指导教师:薛世英陶化龙刘力赵可培完成日期:2015.12第3页共13页内容:吊杆图,锚锭钢筋,索夹,索塔,索塔钢筋,主索图,总体布置图,任务书,开题报告,说明计算书(17505字)摘要:本设计为公路(13m+68m+13m)三跨柔性悬索桥,主跨68m,边跨对称13m。桥面系为钢结构,桥塔为钢筋混凝土结构。悬索桥很早以前就有了,到了近代发展速度十分迅猛,在现代桥梁工程实践中开始广泛应用,其特点是受力性能好、跨越能力大、轻型美观、抗震性能好。是跨越大江大河、海峡港湾等交通障碍的首选桥型。本设计以悬索桥设计基本理论和静动力分析为理论基础,以成功修建的悬索桥为例,根据桥梁的位置、布置形式,拟定桥梁的跨度、矢高、吊杆间距、锚索倾角、桥塔高度和截面、塔基形式、锚碇构造等,说明选择相关参数的过程、依据、和考虑的主要因素,然后进行桥面系、主索边索、吊杆、索夹、抗风索、桥塔、锚碇等具体尺寸设计、配筋和验算。桥面系采用工字钢横纵梁布置,主索用7×19钢丝绳,桥塔用C20钢筋混凝土,本桥相对悬索桥跨度较小,设计考虑恒载、风荷载和温度荷载,活载为汽-10和人行荷载,不考虑地震荷载。由于悬索桥是超静定结构,计算较为烦琐,故在该设计中,结构单元划分和内力计算采用专业设计软件ansys进行,计算方法为有限元法,使设计工作量大大的简化,内力求出后,根据桥梁规范进行结构内力组合。最后,按容许应力法和极限状态法来验算主要截面,以判定设计的合理性。关键词:悬索桥;桥面系;主索;桥塔;锚碇第4页共13页目录第一章绪论1.1悬索桥的分类、构造及主要特点1.1.1分类1.1.2主要构造1.2悬索桥的发展概况1.3悬索桥的计算理论简介1.4本文的主要工作第二章悬索桥结构设计2.1设计方案比选2.2桥面系计算2.2.1桥面系构造2.2.2桥面系纵、横梁内力计算2.3主索和边索的计算2.3.1基本参数2.3.2主索内力计算2.3.3边索内力计算2.3.4索的强度验算2.4挠度验算2.4.1主索因温度及荷载作用下的挠度计算2.4.2边索因温度及荷载作用下引起主索跨中挠度的计算第5页共13页2.4.3最不利情况下跨中失高变化值的计算2.5抗风索的计算2.5.1抗风索布置2.5.2抗风索的设计2.5.3抗风索锚碇的设计2.6吊杆设计2.6.1吊杆形式和各部尺寸2.6.2吊杆承受的荷载内力2.6.3吊杆及连接件设计2.7索夹设计2.7.1索夹尺寸2.7.2U形环强度验算2.7.3索夹净截面强度验算2.8桥塔设计2.8.1桥塔及基本尺寸2.8.2桥塔计算2.8.3桥塔基底应力检算2.9锚碇设计桥塔基底应力检算第三章设计总结致谢附录1第6页共13页附录2第一章绪论1.1悬索桥的分类、构造及主要特点1.1.1分类悬索桥按有无加劲梁可分为无加劲梁和有加劲梁悬索桥两种。现代大跨度悬索桥都是有加劲梁的,根据已建和在建大跨度悬索桥的结构形式,悬索桥有以下几种:1.1.1.1美国式悬索桥其基本特征式采用竖直吊索,并用钢桁架作为加劲梁。这种形式的悬索桥绝大部分为三跨地锚式。加劲梁是不连续的,在主塔处有伸缩缝,桥面为钢筋混凝土桥面,主塔为钢结构。其优点是可以通过增加桁架高度来保证桥梁有足够的刚度,且便于实现双层通车。1.1.1.2英式悬索桥60年代英国提出了新型的悬索桥,突破了悬索桥的传统形式。英国式悬索桥的基本特征是采用呈三角形的斜吊索和高度较小的流线型扁平翼状钢箱梁作为加劲梁。除此之外,这种形式的悬索桥采用连续的钢箱梁作为加劲梁,桥塔处设有伸缩缝,用混凝土桥塔代替钢桥塔。有的还将主缆与加劲梁在主跨中点处固结。英式悬索桥的优点是钢箱加劲梁可减轻恒载,因而减小了主缆的截面,降低了用钢量总造价。1.1.1.3日式悬索桥日本的悬索桥出现在20世纪70年代以后,国际上悬索桥的技术发展已日臻完善,日本结合自己的国情,吸收了世界上先进的技术,形成了日式流派,其主要特第7页共13页征是:主缆一律采用预制束股法架设成缆。加劲梁主要沿袭美式钢桁梁形式,少数公路桥也开始采用英式流线形箱梁结构。吊索沿用美式竖向4股骑挂式钢丝绳。桥塔采用钢结构,主要采用焊接,少数用栓接。鞍座采用铸焊混合式,主缆采用预应力锚固系统。1.1.1.4混合式悬索桥其特点是采用竖直吊索和流线型钢箱梁作为加劲梁。混合式悬索桥的出现,显示了钢箱加劲梁的优越性,同时避免了采用有争议的斜吊索。1.1.2主要构造现代悬索桥通常有桥塔、锚碇、主缆、吊索、加劲梁及鞍座等主要部分组成。1.1.2.1桥塔桥塔是支撑主缆的重要构件。悬索桥的活载和恒载(包括桥面、加劲梁、吊索、主缆及其附属构件,如鞍座和索夹等的重量)以及加劲梁主承在塔身上的反力,都将通过桥塔传递到下部分的塔墩和基础。桥塔采用钢结构,随着预应力混凝土和爬模技术的发展,造价经济的混凝土桥塔将有发展的趋势。1.1.2.2锚碇锚碇是主缆的锚固体。锚碇将主缆的拉力传递给地基基础。通常采用的有重力式锚碇和隧洞式锚碇。重力式锚碇依靠巨大自重来抵抗主缆的垂直分力,水平分力则由锚碇与地基间的摩擦力或嵌固力来抵抗。隧洞式锚碇则是将主缆中的拉力直接传递给周围的基岩。1.1.2.3主缆主缆是悬索桥的主要承重构件。除承受自身恒载外,主缆本身又通过索夹和吊第8页共13页索承受活载和加劲梁(包括桥面)的恒载。除此之外,主缆还承担一部分横向风载,并将它直接传递到桥塔顶部。主缆有钢丝绳和平行线钢缆等,由于平行线钢缆弹性模量高,空隙率低抗锈性能好,因此大跨度悬索桥的主缆都采用这种形式。现代悬索桥的主缆多采用直径5mm的高强度镀锌钢丝组成,设计中一般将主缆设计成二次抛物线的形状。1.1.2.4吊索吊索也称吊杆。是将活载和加劲梁的恒载传递到主缆的构件。吊索的布置形式有垂直式和倾斜式等。其上端与索夹相连,下端与加劲梁连接。吊索宜用有绳蕊的钢丝绳制作,其组成可以是一根、二根或四根一组。1.1.2.5加劲梁加劲梁的主要功能是提供桥面和防止桥面发生过大的挠曲变形和扭曲变形。加劲梁是承受风荷载和其他横向水平力的主要构件,长大悬索桥的加劲梁均为钢结构,一般采用桁架梁形式和箱梁形式。目前看来预应力混凝土加劲梁仅适用于跨径500m以下的悬索桥。在长大悬索桥设计中,加劲梁宽度与主跨径的比例,即宽跨比将是一个涉及风动稳定的突出问题。由于板梁作加劲梁抗风稳定性很差,因此现在已不再用板梁作为长大悬索桥加劲梁了。1.1.2.6鞍座鞍座是支承主缆的重要构件,通过它可以使主缆中的拉力以垂直力和不平衡水平力的方式均匀地传到塔顶式锚碇的支架处。鞍座可以分为塔顶鞍座,设置在桥塔顶部,将主缆荷载传到塔上;锚固鞍座(亦称扩展鞍座)设置在锚碇的支架处,主要目的是改变主缆索的方向,把主缆的钢丝绳股在水平及竖直方向分散开来,并把它第9页共13页们引入各自锚固位置,为了减少塔顶鞍座处钢丝的弯曲次应力,塔顶鞍座弯曲半径一般为主缆主径的8-12倍;而扩展鞍座必须按照钢丝绳股的水平曲率半径的倍以上来确定鞍座的形状。1.2悬索桥的发展概况1.2.1中国悬索桥的发展历程中国近代悬索桥的发展。1938年,湖南一座公路悬索桥建成,该桥可通行10吨汽车,随后又有一批悬索桥建成通车。新中国成立后,共建成70多座悬索桥,但其结构形式都比较简洁,跨径不太大,工程规模较小。进入20世纪90年代,中国现代悬索桥的建设揭开了新的历史篇章,修建了一批结构复杂,造型美观的大跨悬索桥。可以预见,随着我国桥梁科研、设计、施工队伍科技水平的不断提高,跨越中国辽阔大地上的江河湖泊、海峡港湾的悬索桥会修建得更多更美。1.2.2欧洲悬索桥的发展历程20世纪以前欧洲的悬索桥。国外悬索桥的修建历史较中国晚了1000多年,据文献史料记载,1734年萨克森的军队远征但泽,途径奥得河时,修建了西方第一座临时性铁索桥。1741年,英国建成一座铁链悬索桥,跨度21.34m,使用了61年,毁坏于1802年。20世纪的欧洲悬索桥:欧洲悬索桥的建设继续发展并有所创新。法国于1959年建成了主跨为680m的缇卡维尔悬索桥是发展中的一个新的里程碑。该桥的创新特点体现在第一次采用了扁平纤细,截面具有良好的抗风性能的全焊流线型钢箱梁,打破了钢桁架加劲梁一统天下的局面,另外,该桥还采用了斜吊索以提高桥梁的抗风阻尼。第10页共13页欧洲现代大跨度悬索桥的修建确定了混凝土桥塔,扁平流线型全焊加劲钢箱梁悬索桥的优势。且此桁架式加劲梁节省工程投资费用10%左右。因此欧洲大部分悬索桥为英国人设计,所以形成了英国悬索桥风格。1.2.3美洲悬索桥的发展历程美洲20世纪前的悬索桥。李约瑟认为是由中国人传入美洲的。20世纪美国的悬索桥,20世纪中叶,美国大城市的兴起,促进了大跨桥梁建设的发展,至今美国仍是世界上拥有悬索桥最多的国家。在科研、设计和施工技术上形成优势,是悬索桥成为唯一超过千米的成熟桥型,并形成美国流派的悬索桥风格。1.2.4日本悬索桥的建设日本近代悬索桥发展势头迅猛,后来居上,日本的悬索桥,大部分为钢塔和钢桁加劲梁,并且大多为公铁两用悬索桥。综上所述,国内外悬索桥的建设一次次刷新了桥梁的跨径记录,并将在21世纪桥梁的建设中,继续显示出特大跨悬索桥的勃勃生机。1.3悬索桥的计算理论简介1.3.1传统的“弹性理论”简介大缆支点位于塔顶,越过塔顶后,大缆两端在地面附近进入锚碇。在主跨范围内,其加劲梁的跨度是。在主跨之内,用许多竖向设置的吊索将缆和加劲梁连接起来。在缆的边跨范围,可设置若干个小跨度,因其在结构上同所说的悬索桥无关,这里不再分析。弹性理论是悬索桥最早的计算理论,它使用超静定结构计算方法,将悬索桥的结构看作主缆与加劲梁的结合体,在计算中只考虑由荷载产生的新的构件之间的平第11页共13页衡,其特点是恒载与活载的内力计算方法没有差别,也就是在计算活载内力时没有计入恒载产生的初始内力,此理论已经对悬索桥的整体刚度作出贡献。此理论是建立在不考虑荷载的产生会影响内力大小与方向的基础之上。因此,弹性理论是基于变形非常微小而可以忽略的计算假设,只能满足早期跨度较小且加劲梁刚度相对较大的悬索桥的使用。1.3.2挠度理论挠度理论认为主缆在恒载作用下取得平衡时的几何形状(二次抛物线)将因活载的作用而发生改变。主缆因活载作用而增加的拉力所引起的伸长量也应当在计算中加以考虑。用挠度理论计算所得内力比用弹性理论要小得多,根据悬索桥跨度大小,加劲梁的刚度大小,以及活载影响与恒载影响的比例,一般挠度理论的内力计算值比弹性理论减少-,因此,采用挠度理论来设计大跨悬索桥可比弹性理论大大节约材料。这也是相当长的一段时期内挠度理论在大跨度悬索桥设计计算中一直起主导作用的原因。1.3.3有限位移理论当现代悬索桥的跨径进一步增大时,加劲梁的刚度不断相对减小。当加劲梁的高跨比不小于时,采用线性挠度理论分析悬索桥产生的误差将不容忽视,为此,有限位移理论开始应用于现代悬索桥的结构分析中,基于矩阵位移法的有限元技术更能适应解决复杂结构的受力分析。一些有代表性的研究成果逐渐完善和发展了有限位移理论,应用有限位移理论的矩阵法可以综合考虑体系节点位移影响和轴力效应,把悬索桥结构分析方法统一到一般非线性有限元中,是目前大跨悬索桥分析计算中普遍采用的方法。第12页共13页1.4本文主要工作本文主要设计13m+68m+13m三跨柔性悬索桥,上部结构设计包括桥面系、横梁、纵梁、主索、边索、吊杆等。下部结构设计包括索塔、基础、锚碇。在下面几章详细介绍和计算各部结构。参考文献[1]徐君兰.桥梁计算示例集悬索桥[M].北京:人民交通出版社,1991[2]周远栎徐君兰.钢桥[M].北京:人民交通出版社,1991[3]徐君兰.悬索桥[M].北京:人民交通出版社,2001[4]小西一郎.钢桥,第一分册[M].北京:人民铁道出版社,19