Numerical Solution of Two-Point Boundary Value Pro

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

NumericalSolutionofTwo-PointBoundaryValueProblemsB.S.c.ThesisbyGabriellaSebestyenMathematicsB.S.c.,MathematicalAnalystSupervisor:IstvanFaragoProfessorattheDepartmentofAppliedAnalysisandComputationalMathematicsEotvosLorandUniversityBudapest20111Contents1Introduction32SolvabilityofBoundaryValueProblems53ShootingMethod73.1Introduction..............................73.2Intervallum-BisectionMethod....................73.3ChordMethod............................83.4NewtonMethod............................94FiniteDi erenceSchemes114.1FiniteDi erences...........................114.2SolutionwithFiniteDi erencesMethod..............124.3TheSolutionofLinearBoundaryValueProblemswithFiniteDi erences...............................145NumericalsolutionwithMATLAB255.1WhyMATLAB?...........................255.2SolvingtheexamplewithMATLAB................255.2.1FiniteDi erencesMethod..................255.2.2ShootingMethod.......................286Summary3221IntroductionTheobjectofmydissertationistopresentthenumericalsolutionoftwo-pointboundaryvalueproblems.Insomecases,wedonotknowtheinitialconditionsforderivativesofacertainorder.Instead,weknowinitialand nalvaluesfortheunknownderivativesofsomeorder.Thesetypeofproblemsarecalledboundary-valueproblems.Mostphysicalphenomenasaremodeledbysystemsofordinaryorpartialdif-ferentialequations.Usually,theexactsolutionoftheboundaryvalueproblemsaretoodicult,sowehavetoapplynumericalmethods.Weuseddi erentnumericalmethodsfordeterminingthenumericalsolutionsofCauchy-problem.OneofthemistheExplicitEulermethod,whichisthesimplestscheme.TheImprovedEulermethodisthesimplestofafamilyofsimilarpredictor-correctormethodsfollowingtheformofasinglepredictorstepandoneormorecorrectorsteps.OnesubgroupofthisfamilyaretheRunge-Kuttamethodswhichusea xednumberofcorrectorsteps.TheImprovedEulermethodisthesimplestofthissubgroup.Allthemethodsgivencanbeappliedtohigherofordinarydi erentialequa-tions,provideditispossibletowriteanexplicitexpressionforthehighestorderderivativeandthesystemhasacompletesetofinitialconditions.MotivationThefollowingexampledescribesaphysicaltaskwhatwecanuseinpracticeanditoriginatesfromatwo-pointboundaryvalueproblem.ShootingProblemWelaunchacannonballfroma xedplace.Lety(t)betheheightofthecan-nonballandx(t)thedistancefromthe xedplaceatt0moment.Moreoverwesupposethatthehorizontalspeedisconstant,theverticaldistancedependsonlyonthegravitation,sowedispensewiththedragco-ecient.Thegoalistodeterminetheangleofthelaunch,ifthecannonballislocatedinplacex=L!Thecontinousmathematicalmodeloftheproblemisthefollowing:x0(t)=v;y00(t)=g;x(0)=0;y(0)=0:(1)Thesolutionofthesecondequationwiththeinitialconditionis:3x(t)=vt,whichmeansthatt=xv:LetusintroduceanewfunctionY(x)asfollows:y(t)=y(xv)=Y(x):Then,usingthechainrule,wegety0(t)=dYdxdxdt=dYdxv;y00(t)=vd2Ydx2v=v2d2Ydx2:(2)Hence,weobtaintheproblem:Y00(x)=gv2;x2(0;L);Y(0)=0;Y(L)=0:(3)Thisproblemcanbeeasilysolvedandthesolutionis:Y(x)=gx2v2(Lx):(4)Thenwecandeterminetheangleofthelaunchfromthefollowingrelation:tan( )=Y0(0)=gL2v2:(5)Summarizetheshootingproblem,accordingto(5)thesolutionalwaysexists.Itmeanswecanlauchthecannonballtoeverydistance.Butitisaparadoxinthereality.42SolvabilityofBoundaryValueProblemsInthissection,weappoitthetwo-pointboundaryvalueproblemgenerally.De nition1Letf:R3!Rgivenfunctionand ; aregivennumbers.Theproblemu00=f(t;u;u0);t2(a;b);(6)u(a)= ;u(b)= (7)iscalledtwo-pointboundaryvalueproblem.WhenweanalyzetheCauchyproblemfortheordinarydi erentialequationof rstorderintheformu0(t)=g(t;u);(8)u(t0)=u0:(9)wehaveseenthatthesolvabilitydependsonlyonthefunctionf.Thefollowingtheoremgivessucientconditionoftheexistance.Thetheoremconnecttothisproblem:Theorem1Supposeg:[t0 ;t0+ ]B(a; )!RiscontinousandboundedbyM.Suppose,furthermore,thatg(t;)isLipschitzcountinouswithLipschitzconstantLforeveryt2[t0 ;t0+ ]:Thentheproblem(8),(9)hasauniquesolutionu(t)de nedon[t0b;t0+b],whereb=minn ; Mo:Ifweanalyzeboundaryvalueproblems(6),(7)thesituationisdi erent.Aswewillsee,boththefunctionfandtheboundaryvaluedeterminetheresulttogether.ExampleLetf(t;u;u0)=1u,hencetheequation(6)hastheformu00+u=1:Thearbitrarysolutionofthisdi erentalequationisu(t)=c1cost+c2sint+1,wherec1;c2areconstants.Weanalyzedi erentboundaryconditionsin(7),whichshouldde netheseconstans.5Firstly,letusputa=4; =2;b=; =2:Thesolutionisunique:c1=1;c2=p2+1:Hence,theuniquesolutionisu(t)=1cost+(p2+1)sint+1:Ifweputa=4; =2;b=54; =2;thentheproblemhasnosolution,becausedonotexistsuchconstantsc1;c2forwhichtheboundaryvalueistrue.Thefollowingtheoremgivessucientcondition.Theorem2Supposethat,T=(t1;s1;s2):t2[a;b];s1;s2;2Randf:R3!Risagivenfunctionwiththepropertiesf2C(T);@1f;@2f2C(T);@2f0onT,thereexistsanonnegativeconstantMsuchthatj@3fjMonT.Undertheseconditionsthetwo-pointboundaryvalueproblem(6),(7)hasuniquesolution.CorollaryLetusconsiderthespecialcasewhenfislinear,u00=f(t;u;u0)=p(t)u0+q(t)u+r(t);t2(a;b);u(a)= ;u(b)= wherep;q;r2C[a;b]arecontinousfunctions.Ifq(t)0forallt2[a;b];thenthelinearboundaryvalueproblemhasauniquesolution,becauset

1 / 36
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功