3.线段的垂直平分线(2)三角形的垂心驶向胜利的彼岸线段的垂直平分线的作法已知:线段AB,如图.求作:线段AB的垂直平分线.作法:用尺规作线段的垂直平分线.1.分别以点A和B为圆心,以大于AB/2长为半径作弧,两弧交于点C和D.ABCD2.作直线CD.则直线CD就是线段AB的垂直平分线.请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.老师提示:因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中点.回顾思考驶向胜利的彼岸线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.ACBPMN如图,∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).回顾思考驶向胜利的彼岸线段的垂直平分线的性质定理的逆定理逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.ACBPMN如图,∵PA=PB(已知),∴点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).老师提示:这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?回顾思考驶向胜利的彼岸亲历知识的发生和发展剪一个三角形纸片通过折叠找出每条边的垂直平分线.结论:三角形三条边的垂直平分线相交于一点.老师期望:你能写出规范的证明过程.你想证明这个命题吗?你能证明这个命题吗?观察这三条垂直平分线,你发现了什么?做一做1驶向胜利的彼岸亲历知识的发生和发展利用尺规作出三角形三条边的垂直平分线.结论:三角形三条边的垂直平分线相交于一点.老师期望:你能写出规范的证明过程.你想证明这个命题吗?你能证明这个命题吗?做一做1再观察这三条垂直平分线,你又发现了什么?与同伴交流.驶向胜利的彼岸思考分析命题:三角形三条边的垂直平分线相交于一点.如图,在△ABC中,设AB,BC的垂直平分线相交于点P,连接AP,BP,CP.∵点P在线段AB的垂直平分线上,∴PA=PB(或AB的中点,).同理,PB=PC.∴PA=PC.∴点P在线段AB的垂直平分线上,∴AB,BC,AC的垂直平分线相交于一点.想一想:若作出∠P的角平分线,结论是否也可以得征?咋证三条直线交于一点基本想法是这样的:我们知道,两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.这时可以考虑前面刚刚学到的逆定理.ABCP驶向胜利的彼岸定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.如图,在△ABC中,∵c,a,b分别是AB,BC,AC的垂直平分线(已知),∴c,a,b相交于一点P,且PA=PB=PC(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).老师提示:这是一个证明三条直线交于一点的证明根据.几何的三种语言做一做1ABCPabc回味无穷定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.如图,在△ABC中,∵c,a,b分别是AB,BC,AC的垂直平分线(已知),∴c,a,b相交于一点P,且PA=PB=PC(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).小结拓展ABCPabc尺规作图的解题格式(六步骤):已知:求作:分析:作法:证明:讨论:驶向胜利的彼岸4.角平分线(1)性质定理与逆定理驶向胜利的彼岸角平分线你还能利用折纸的方法得到角平分线及角平分线上的点吗?回顾思考已知:如图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E.求证:PD=PE.而△OPD≌△OPE的条件由已知易知它满足公理(AAS).故结论可证.老师期望:你能写出规范的证明过程.分析:要证明PD=PE,只要证明它们所在的△OPD≌△OPE,你还记得角平分线上的点有什么性质吗?角平分线上的点到这个角的两边距离相等.你能证明这一结论吗?OCB1A2PDE驶向胜利的彼岸几何的三种语言定理角平分线上的点到这个角的两边距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.开启智慧如图,∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥oB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).OCB1A2PDE进步的标志′驶向胜利的彼岸思考分析你能写出“定理角平分线上的点到这个角的两边距离相等”的逆命题吗?逆命题在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.它是真命题吗?如果是.请你证明它.已知:如图,PD=PE,PD⊥OA,PE⊥OB,垂足分别是D,E.求证:点P在∠AOB的平分线上.分析:要证明点P在∠AOB的平分线上,可以先作出过点P的射线OC,然后证明∠1=∠2.老师期望:你能写出规范的证明过程.OCB1A2PDE挑战自我随堂练习1驶向胜利的彼岸如图,AD,AE分别是△ABC中∠A的内角平分线外角平分线,它们有什么关系?老师期望:你能说出结论并能证明它.EDABCF驶向胜利的彼岸逆定理我能行1逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.如图,∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(已知),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).老师提示:这个结论又是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?OBAC12PDE尺规作图做一做1已知:∠AOB,如图.求作:射线OC,使∠AOC=∠BOC.作法:用尺规作角的平分线.1.在OAT和OB上分别截取OD,OE,使OD=OE.2.分别以点D和E为圆心,以大于DE/2长为半径作弧,两弧在∠AOB内交于点C..3.作射线OC.请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.老师提示:作角平分线是最基本的尺规作图,这种方法要确实掌握.ABOC则射线OC就是∠AOB的平分线.DE回味无穷定理角平分线上的点到这个角的两边距离相等.∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(已知),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).用尺规作角的平分线.邻补角的角平分线之间的关系.如小结拓展OCB1A2PDE