第三章组合逻辑电路的分析与设计3.1逻辑代数一、逻辑代数的基本公式公式的证明方法:(2)用真值表证明,即检验等式两边函数的真值表是否一致。例3.1.2用真值表证明反演律BAAB(1)用简单的公式证明略为复杂的公式。BABAA例3.1.1证明吸收律证:BAABABBA)(BABAABBABAABAB)()(AABBBABA二、逻辑代数的基本规则对偶规则的基本内容是:如果两个逻辑函数表达式相等,那么它们的对偶式也一定相等。基本公式中的公式l和公式2就互为对偶式。CBABCAABC'L1.代入规则对于任何一个逻辑等式,以某个逻辑变量或逻辑函数同时取代等式两端任何一个逻辑变量后,等式依然成立。例如,在反演律中用BC去代替等式中的B,则新的等式仍成立:2.对偶规则将一个逻辑函数L进行下列变换:·→+,+→·0→1,1→0所得新函数表达式叫做L的对偶式,用表示。3.反演规则将一个逻辑函数L进行下列变换:·→+,+→·;0→1,1→0;原变量→反变量,反变量→原变量。所得新函数表达式叫做L的反函数,用表示。在应用反演规则求反函数时要注意以下两点:(1)保持运算的优先顺序不变,必要时加括号表明,如例3.1.3。(2)变换中,几个变量(一个以上)的公共非号保持不变,如例3.1.4。LDBCAL)()(DBCALDCBALDCBAL利用反演规则,可以非常方便地求得一个函数的反函数例3.1.3求以下函数的反函数:解:例3.1.4求以下函数的反函数:解:三、逻辑函数的代数化简法其中,与—或表达式是逻辑函数的最基本表达形式。2.逻辑函数的最简“与—或表达式”的标准(1)与项最少,即表达式中“+”号最少。(2)每个与项中的变量数最少,即表达式中“·”号最少。1.逻辑函数式的常见形式一个逻辑函数的表达式不是唯一的,可以有多种形式,并且能互相转换。例如:3.用代数法化简逻辑函数(4)配项法。)()()()(CCBACCABCBACABCBAABCCBCBACBBCALABBABAAB)(BADECBABAL)(EBAEBBAEBABALCAABBCDAABCDCAABAABCDCAABBCDCAABL)((1)并项法。(2)吸收法。(3)消去法。运用公式,将两项合并为一项,消去一个变量。如1AA运用吸收律A+AB=A,消去多余的与项。如在化简逻辑函数时,要灵活运用上述方法,才能将逻辑函数化为最简。再举几个例子:解:例3.1.6化简逻辑函数:EFBEFBABDCAABDAADLEFBEFBABDCAABAL(利用)1AAEFBBDCAA(利用A+AB=A)EFBBDCA(利用)BABAA解:例3.1.7化简逻辑函数:)(GFADEBDDBBCCBCAABL)(GFADEBDDBBCCBCBAL(利用反演律))(GFADEBDDBBCCBA(利用)(配项法)BABAABDDBBCCBA(利用A+AB=A))()(CCBDDBBCDDCBACBDBCDDBBCDCBCDBABCDDBBCDCBA(利用A+AB=A)DBBCBBDCA)(DBBCDCA(利用)1AA由上例可知,逻辑函数的化简结果不是唯一的。代数化简法的优点是不受变量数目的限制。缺点是:没有固定的步骤可循;需要熟练运用各种公式和定理;在化简一些较为复杂的逻辑函数时还需要一定的技巧和经验;有时很难判定化简结果是否最简。解法1:解法2:例3.1.8化简逻辑函数:BACBCBBAL3.2逻辑函数的卡诺图化简法一、最小项的定义与性质最小项的定义n个变量的逻辑函数中,包含全部变量的乘积项称为最小项。n变量逻辑函数的全部最小项共有2n个。二、逻辑函数的最小项表达式任何一个逻辑函数表达式都可以转换为一组最小项之和,称为最小项表达式。例1:将以下逻辑函数转换成最小项表达式:解:解:CAABCBAL),,()()(),,(BBCACCABCAABCBALCBABCACABABC=m7+m6+m3+m1例3.2.2将下列逻辑函数转换成最小项表达式:CBAABABFCBABCAABCBABAABCBAABAB))((CBAABABFCBABCACABABCCBABCACCAB)(=m7+m6+m3+m5=∑m(3,5,6,7)三、卡诺图2.卡诺图用小方格来表示最小项,一个小方格代表一个最小项,然后将这些最小项按照相邻性排列起来。即用小方格几何位置上的相邻性来表示最小项逻辑上的相邻性。CBAACBBACCBAABC)(1.相邻最小项如果两个最小项中只有一个变量互为反变量,其余变量均相同,则称这两个最小项为逻辑相邻,简称相邻项。例如,最小项ABC和就是相邻最小项。如果两个相邻最小项出现在同一个逻辑函数中,可以合并为一项,同时消去互为反变量的那个量。如3.卡诺图的结构(2)三变量卡诺图0mABCmABC1m3mABCABC265mABC74ABCmmmABCABC0(a)(b)132457610011100BCA01BCA(1)二变量卡诺图(3)四变量卡诺图仔细观察可以发现,卡诺图具有很强的相邻性:(1)直观相邻性,只要小方格在几何位置上相邻(不管上下左右),它代表的最小项在逻辑上一定是相邻的。(2)对边相邻性,即与中心轴对称的左右两边和上下两边的小方格也具有相邻性。m0ABCDABCDm1ABCDm3mABCD2m567mmABCDABCDmABCD4ABCDABCDmm13ABCDABCD1412m15mABCDABCDABCDmABCD8m1011m9mABCDABCD0132765413141512981110ABCD0000010111111010(a)(b)四、用卡诺图表示逻辑函数1.从真值表到卡诺图例3.2.3某逻辑函数的真值表如表3.2.3所示,用卡诺图表示该逻辑函数。1011010A00BC010001111L解:该函数为三变量,先画出三变量卡诺图,然后根据真值表将8个最小项L的取值0或者1填入卡诺图中对应的8个小方格中即可。2.从逻辑表达式到卡诺图(2)如表达式不是最小项表达式,但是“与—或表达式”,可将其先化成最小项表达式,再填入卡诺图。也可直接填入。例3.2.5用卡诺图表示逻辑函数ABCCABBCACBAF7630mmmmFDCBBAG(1)如果表达式为最小项表达式,则可直接填入卡诺图。例3.2.4用卡诺图表示逻辑函数:解:写成简化形式:然后填入卡诺图:解:直接填入:五、逻辑函数的卡诺图化简法1.卡诺图化简逻辑函数的原理:(1)2个相邻的最小项结合,可以消去1个取值不同的变量而合并为l项。(2)4个相邻的最小项结合,可以消去2个取值不同的变量而合并为l项。(3)8个相邻的最小项结合,可以消去3个取值不同的变量而合并为l项。总之,2n个相邻的最小项结合,可以消去n个取值不同的变量而合并为l项。2.用卡诺图合并最小项的原则(画圈的原则)(1)尽量画大圈,但每个圈内只能含有2n(n=0,1,2,3……)个相邻项。要特别注意对边相邻性和四角相邻性。(2)圈的个数尽量少。(3)卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值为1的最小项。(4)在新画的包围圈中至少要含有1个末被圈过的1方格,否则该包围圈是多余的。3.用卡诺图化简逻辑函数的步骤:(1)画出逻辑函数的卡诺图。(2)合并相邻的最小项,即根据前述原则画圈。(3)写出化简后的表达式。每一个圈写一个最简与项,规则是,取值为l的变量用原变量表示,取值为0的变量用反变量表示,将这些变量相与。然后将所有与项进行逻辑加,即得最简与—或表达式。例3.2.6用卡诺图化简逻辑函数:L(A,B,C,D)=∑m(0,2,3,4,6,7,10,11,13,14,15)解:(1)由表达式画出卡诺图。(2)画包围圈,合并最小项,得简化的与—或表达式:解:(1)由表达式画出卡诺图。(2)画包围圈合并最小项,得简化的与—或表达式:例3.2.7用卡诺图化简逻辑函数:注意:图中的虚线圈是多余的,应去掉。例3.2.8某逻辑函数的真值表如表3.2.4所示,用卡诺图化简该逻辑函数。(2)画包围圈合并最小项。有两种画圈的方法:(a):写出表达式:解:(1)由真值表画出卡诺图。(b):写出表达式:通过这个例子可以看出,一个逻辑函数的真值表是唯一的,卡诺图也是唯一的,但化简结果有时不是唯一的。4.卡诺图化简逻辑函数的另一种方法——圈0法例3.2.9已知逻辑函数的卡诺图如图3.2.13所示,分别用“圈1法”和“圈0法”写出其最简与—或式。解:(1)用圈1法画包围圈,得:(2)用圈0法画包围圈,得:六、具有无关项的逻辑函数的化简1.无关项——在有些逻辑函数中,输入变量的某些取值组合不会出现,或者一旦出现,逻辑值可以是任意的。这样的取值组合所对应的最小项称为无关项、任意项或约束项。例3.2.10:在十字路口有红绿黄三色交通信号灯,规定红灯亮停,绿灯亮行,黄灯亮等一等,试分析车行与三色信号灯之间逻辑关系。解:设红、绿、黄灯分别用A、B、C表示,且灯亮为1,灯灭为0。车用L表示,车行L=1,车停L=0。列出该函数的真值。显而易见,在这个函数中,有5个最小项为无关项。带有无关项的逻辑函数的最小项表达式为:L=∑m()+∑d()如本例函数可写成L=∑m(2)+∑d(0,3,5,6,7)2.具有无关项的逻辑函数的化简化简具有无关项的逻辑函数时,要充分利用无关项可以当0也可以当1的特点,尽量扩大卡诺圈,使逻辑函数更简。例3.2.10:不考虑无关项时,表达式为:注意:在考虑无关项时,哪些无关项当作1,哪些无关项当作0,要以尽量扩大卡诺圈、减少圈的个数,使逻辑函数更简为原则。考虑无关项时,表达式为:例3.2.11:某逻辑函数输入是8421BCD码,其逻辑表达式为:L(A,B,C,D)=∑m(1,4,5,6,7,9)+∑d(10,11,12,13,14,15)用卡诺图法化简该逻辑函数。解:(1)画出4变量卡诺图。将1、4、5、6、7、9号小方格填入1;将10、11、12、13、14、15号小方格填入×。(2)合并最小项,如图(a)所示。注意,1方格不能漏。×方格根据需要,可以圈入,也可以放弃。(3)写出逻辑函数的最简与—或表达式:如果不考虑无关项,如图(b)所示,写出表达式为:3.3组合逻辑电路的分析方法一.组合逻辑电路的特点电路任一时刻的输出状态只决定于该时刻各输入状态的组合,而与电路的原状态无关。组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。每一个输出变量是全部或部分输入变量的函数:L1=f1(A1、A2、…、Ai)L2=f2(A1、A2、…、Ai)……Lj=fj(A1、A2、…、Ai)二、组合逻辑电路的分析方法分析过程一般包含4个步骤:例3.3.1:组合电路如图所示,分析该电路的逻辑功能。解:(1)由逻辑图逐级写出逻辑表达式。为了写表达式方便,借助中间变量P。(2)化简与变换:(3)由表达式列出真值表。(4)分析逻辑功能:当A、B、C三个变量不一致时,电路输出为“1”,所以这个电路称为“不一致电路”。3.4组合逻辑电路的设计方法设计过程的基本步骤:ABCCABCBABCAL例3.4.1:设计一个三人表决电路,结果按“少数服从多数”的原则决定。解:(1)列真值表:(3)化简。(2)由真值表写出逻辑表达式:得最简与—或表达式:(4)画出逻辑图。ACBCABL如果,要求用与非门实现该逻辑电路,就应将表达式转换成与非—与非表达式:画出逻辑图如图所示。例3.4.2:设计一个电话机信号控制电路。电路有I0(火警)、I1(盗警)和