数学家的事迹

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学家的事迹.txt我们用一只眼睛看见现实的灰墙,却用另一只眼睛勇敢飞翔,接近梦想。男人喜欢听话的女人,但男人若是喜欢一个女人,就会不知不觉听她的话。高斯德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。2.塞乐斯塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:1.圆被任一直径二等分。2.等腰三角形的两底角相等。3.两条直线相交,对顶角相等。4.半圆的内接三角形,一定是直角三角形。5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。塞乐斯的墓碑上列有这样一段题辞:这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。3.阿基米德的事迹杂草丝中,一座古坟,墓碑已经风化,字迹模糊不清。然而一个奇怪的标帜却隐约地映入人们的眼帘:碑顶部刻着一个等边圆柱以及它内切球的图形。了解数学史的人很快就会知道,这里长眠着古代最伟大的数学家阿基米德,已经有二千多年了。阿基米德(公元前287—前212年)在数学上的成就很多,其中他最感兴趣的是关于球体积公式的推导,他为了找到球体积的计算方法,先用一个空心的等边圆柱(就是圆柱底面圆的直径正好等于圆柱的高)的容器,里面装满了水。然后把一个直径等于这个圆柱高的球轻轻放进容器,再小心地把溢出的水收集起来,量出水的体积就是球的体积。他经过多次这样的实验,发现球的体积正好等于圆柱容。假设圆柱底面半径为R,我们不难用公式来验算这个结论。圆柱的体积为V圆柱=πR2·2R=2πR3而V球=πR3∴。阿基米德非常重视这个发现,嘱咐别人在他死后,能在他墓碑上刻上这个图形。这就是上面所提到的古坟墓碑上所刻的图案。阿基米德研究数学时聚精会神,可以说是废寝忘食。冬天吃饭时,他常坐在火盆旁,一手端着饭碗,一手在火盆的灰烬里画着几何图形,都忘了吃饭。有一回,因为一个数学问题没解决,他埋头钻研,一直没空去洗澡,身上很脏,发出一股难闻的气味。家里人硬把他推进浴室。那时候的人有个习惯,洗完澡后要在身上擦香油膏。阿基米德在浴室里洗了好半天都不见出来,家里人感到很奇怪,在门外喊他也不见回音,便推门进去一看,原来他正坐在浴盆旁的凳子上,用手蘸着香油膏在皮肤上划几何图形哩!他研究几何图形时,脸上总是笑呵呵的,嘴里还叽里咕噜,家里人说他像被神附了体一样。阿基米德为人谦逊,对待科学严肃慎重,他曾说过,他的一切发现别人都会发现,他毫不隐讳自己作品中的错误。他在自己所写的《螺线论》这篇文章中,坦率地承认自己在以前的著作中所犯的某些错误,让读者从中吸取教训。人们非常赞赏他这种高尚的品德。恩格斯夸奖他是对科学作了“精确而有系统研究”的代表人物之一。一位俄国数学家还在著作中写下了赞美他的诗句:“这儿阿基米德出现了,那古代的哲学家,谁也不能和他相比拟,他的功绩全世界第一。”4.大陆漂移我们这个星球,宛如飘浮在浩瀚宇宙中的一方岛屿,从茫茫中来,又向茫茫中去。生息在这一星球上的生命,经历了数亿年的繁衍和进化,终于在创世纪的今天,造就了人类的高度智慧和文明。然而,尽管人类已经有着如此之多的发现,但仍不知道我们周围的宇宙是怎样开始的,也不知道它将怎样终结!万物都在时间长河中流淌着,变化着。从过去变化到现在,又从现在变化到将来。静止是暂时的,运动却是永恒!天地之间,大概再没有什么能比闪烁在天空中的星星,更能引起远古人的遐想。他们想象在天庭上应该有一个如同人世间那般繁华的街市。而那些本身发着亮光的星宿,则忠诚地守护在天宫的特定位置,永恒不动。后来,这些星星便区别于月亮和行星,称之为恒星。其实,恒星的称呼是不确切的,只是由于它离我们太远了,以致于它们间的任何运动,都慢得使人一辈子感觉不出来!北斗七星,大约是北天最为明显的星座之一。在天文学上有个正式的名字叫大熊星座。大熊座的七颗亮星,组成把勺子的样子,勺底两星的连线延长约5倍处,可寻找到北极星。在北天的夜空是很容易辨认的。大概所有的人一辈子见到的北斗七星,总是那般形状,这是不言而喻的。人的生命太短暂了!几十年的时光,对于天文数字般的岁月,是几乎可以忽略不计的!然而有幸的是:现代科学的进展,使我们有可能从容地追溯过去,和精确地预测将来。人类在十万年前、现在和十万年后应该看到和可以看到的北斗七星,它们的形状是大不一样的!不仅天在动,而且地也在动。火山的喷发,地层的断裂,冰川的推移,泥石的奔流,这一切都还只是局部的现象。更加不可思议的是。我们脚下站立着的大地,也如同水面上的船只那样,在地馒上缓慢地漂移着!本世纪初,德国年青的气象学家魏根纳(Wegener,1880~1930)发现:大西洋两岸,特别是非洲和南美洲海岸轮廓,非常相似。这其间究竟隐含着什么奥秘呢?魏根纳为此而深深思索着。一天,魏根纳正在书房看报一个偶然的变故,激发了他的灵感。由于座椅年久失修,某个接头突然断裂,魏的身体骤然间向后仰去,持在手中的报纸被猛然断裂。在这一切过去之后,当魏根纳重新注视手上的两半报纸时。顿时醒悟了!长期萦回在脑中的思绪跟眼前的现象,碰撞出智慧的火花!一个伟大的思想在魏根纳的脑中闪现了:世界的大陆原本是连在一起的,后来由于某种原因而破裂分离了!此后,魏根纳奔波于大西洋两岸,为自己的理论寻找证据。公元1912年,“大陆漂移说”终于诞生了!今天,大陆漂移学说已为整个世界所公认。据美国宇航局的最新测定表明,目前大陆移动仍在持续:如北美正以每年1.52厘米的速度远离欧洲而去;而澳大利亚却以每年6.858厘米的速度,向夏威夷群岛飘来!世间万物都在变化,“不变”反而使人充满着疑惑,下面的故事是在生动不过了。公元1938年12月22日,在非洲的科摩罗群岛附近,渔民们捕捉到一条怪鱼。这条鱼全身披着六角形的鳞片,长着四只“肉足”,尾巴就像古代勇士用的长矛。当时渔民们对此并不在意,因为每天从海里网上来的奇形怪状的生物多得是!于是这条鱼便顺理成章地成了美味佳肴。话说当地博物馆有个年轻的女管理员叫拉蒂迈,此人平时热心于鱼类学研究。当她听到消息闻讯赶来的时候,见到的已是一堆残皮剩骨。不过,出于职业的爱好,拉蒂迈小姐还是把鱼的头骨收集了起来,寄给当时的鱼类学权威,南非罗兹大学的史密斯教授。教授接信后,顿时目瞪口呆。原来这种长着矛尾的鱼,早在七千万年前就已绝种了。科学家们过去只是在化石中见到它。眼前发生的一切,使教授由惊震转为打一个大大的问号。于是不惜定下十万元重金,悬赏捕捉第二条矛尾鱼!时间一年又一年地过去,不知不觉过了十四个年头。正当史密斯博士抱恨绝望之际,公元1952年12月20日,教授突然收到了一封电报,电文是:“捉到了您所需要的鱼。”史密斯见电欣喜若狂,立即乘机赶往当地。当教授用颤抖的双手打开鱼布包时,一股热泪夺眶而出……那么,为什么一条矛尾鱼竟会引起这样大的轰动呢?原来现在捉到的矛尾鱼和七千万年前的化石相比,几乎看不到变异!矛尾鱼在经历了亿万年的沧桑之后,竟然既没有灭绝,也没有进化。这一“不变”的迷惑,无疑是对“变”的进化论的挑战!究竟是达尔文的理论需要修正呢,还是由于其他更加深刻的原因?争论至今仍在继续!我们前面讲过,这个世界的一切量,都跟随着时间的变化而变化。时间是最原始的自行变化的量,其他量则是因变量。一般地说,如果在某一变化过程中有两个变量x,y,对于变量x在研究范围内的每一个确定的值,变量y都有唯一确定的值和它对应,那么变量x就称为自变量,而变量y则称为因变量,或变量X的函数,记为:y=f(X)函数一语,起用于公元1692年,最早见自德国教学家莱布尼兹的著作。记号f(x)则是由瑞士数学家欧位于公元1724年首次使用的.上面我们所讲的函数定义,属于德国数学家黎曼(Riemann,1826-1866)。我国引进函数概念,始于1859年,首见于清代数学家李善兰(1811~1882)的译作。一个量如果在所研究的问

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功