教人以渔终身受用1第一部分高中物理活题巧解方法总论一、整体法例1:在水平滑桌面上放置两个物体A、B如图1-1所示,mA=1kg,mB=2kg,它们之间用不可伸长的细线相连,细线质量忽略不计,A、B分别受到水平间向左拉力F1=10N和水平向右拉力F2=40N的作用,求A、B间细线的拉力。【巧解】由于细线不可伸长,A、B有共同的加速度,则共同加速度221401010/12ABFFamsmm对于A物体:受到细线向右拉力F和F1拉力作用,则1AFFma,即11011020AFFmaNF=20N【答案】=20N例2:如图1-2所示,上下两带电小球,a、b质量均为m,所带电量分别为q和-q,两球间用一绝缘细线连接,上球又用绝缘细线悬挂在开花板上,在两球所在空间有水平方向的匀强电场,场强为E,平衡细线都被拉紧,右边四图中,表示平衡状态的可能是:【巧解】对于a、b构成的整体,总电量Q=q-q=0,总质量M=2m,在电场中静止时,ab整体受到拉力和总重力作用,二力平衡,故拉力与重力在同一条竖直线上。【答案】A说明:此答案只局限于a、b带等量正负电荷,若a、b带不等量异种电荷,则a与天花板间细线将偏离竖直线。例3:如图1-3所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,教人以渔终身受用2开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即12ag,则小球在下滑的过程中,木箱对地面的压力为多少?【巧解】对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:()NmgMgFmaM故木箱所受支持力:22NMmFg,由牛顿第三定律知:木箱对地面压力2'2NNMmFFg。【答案】木箱对地面的压力22NMmFg例4:如图1-4,质量为m的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A、B之间无相对运动,设弹簧的劲度系数为k,当物体离开平衡位置的位移为x时,A、B间摩擦力f的大小等于()A、0B、kxC、()mkxMD、()mkxMm【巧解】对于A、B构成的整体,当系统离开平衡位置的位移为x时,系统所受的合力为F=kx,系统的加速度为kxamM,而对于A物体有摩擦力fFma合,故正确答案为D。【答案】D例5:如图1-5所示,质量为m=2kg的物体,在水平力F=8N的作用下,由静止开始沿水平方向右运动,已知物体与水平面间的动摩擦因数μ=0.2,若F作用t1=6s后撤去,撤去F后又经t2=2s物体与竖直壁相碰,若物体与墙壁作用时间t3=0.1s,碰后反向弹回的速度ν=6m/s,求墙壁对物体的平均作用力FN(g取10m/s2)。【巧解】如果按时间段来分析,物理过程分为三个:撤去F前的加速过程;撤去F后的减速过程;物体与墙壁碰撞过程。分段计算会较复杂。现把全过程作为一个整体(整体法),应用动量定理,并取F的方向为正方向,则有1123()0NFtmgttFtmv代入数据化简可得FN=280N【答案】FN=280N二、隔离法例1:如图2-1所示,在两块相同的竖直木板之间,有质量均为m的4块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则第1块对第2块砖摩擦力大小为()A、0B、mg/2C、mgD、2mg【巧解】本题所求解的是第1块对第2块砖摩擦力,属于求内力,最终必须要用隔离法才能求解,研究对象可以选1,也可以选2,到底哪个更简单呢?若选2为研究对象,则1对2的摩擦力及3对2的摩擦力均是未知的,无法求解;而选1为研究对象,尽管2对1的摩擦力及左板对1的摩擦力均是未知的,但左板对1的摩擦力可以通过整体法求解,故选1为研究对象求内力较为简单。先由整体法(4块砖作为一个整体)可得左、右两板对系统的摩擦力方向都竖直向上,大小均为4mg/2=2mg,再以1为研究对象分析,其受力图2-2所示(一定教人以渔终身受用3要把它从周围环境中隔离开来,单独画受力图),1受竖直向下的重力为mg,左板对1的摩擦力f左板竖直向上,大小为2mg,故由平衡条件可得:2对1的摩擦力f21竖直向下,大小为mg,答案应选C项。【答案】C例2:如图2-3所示,斜面体固定,斜面倾角为а,A、B两物体叠放在一起,A的上表面水平,不计一切摩擦,当把A、B无初速地从斜面顶端释放,若运动过程中B没有碰到斜面,则关于B的运动情况描述正确的是()A、与A一起沿斜面加速下滑B、与A一起沿斜面匀速下滑C、沿竖直方向匀速下滑D、沿竖直方向加速下滑【巧解】本题所求解的是系统中的单个物体的运动情况,故可用隔离法进行分析,由于不计一切摩擦,而A的上表面水平,故水平方向上B不受力。由牛顿第一定律可知,B在水平方向上运动状态不变(静止),故其运动方向必在竖直方向上。因A加速下滑,运动过程中B没有碰到斜面(A、B仍是接触的),即A、B在竖直方向上的运动是一样的,故B有竖直向下的加速度,答案D正确。【答案】D例3:如图2-4所示,固定的光滑斜面体上放有两个相同的钢球P、Q,MN为竖直挡板,初状态系统静止,现将挡板MN由竖直方向缓慢转至与斜面垂直的方向,则该过程中P、Q间的压力变化情况是()A、一直增大B、一直减小C、先增大后减小D、一直不变【巧解】本题所求解的是系统内力,可用隔离法来分析,研究对象可以选P,也可以选Q,到底选哪个更简单呢?当然选P要简单些,因为P受力个数少,P受到重力、斜面的支持力N斜(垂直斜面向上)和Q的支持力NQ(沿斜面斜向上)共三个力作用,由平衡条件可知,这三个力的合力为零,即重力沿N斜,NQ反方向的分力分别与N耕、NQ的大小相等,在转动挡板过程中,重力的大小及方向都不变,而N耕、NQ的方向也都不变,即分解重力的两个方向是不变的,故分力也不变,故D选项正确【答案】D例4:如图2-5所示,人重G1=600N,木板重G2=400N,人与木板、木板与地面间滑动摩擦因数均为μ=0.2,现在人用水平力F拉绳,使他们木板一起向右匀速动动,则()A、人拉绳的力是200NB、人的脚给木板的摩擦力向右C、人拉绳的力是100ND、人的脚给木板的摩擦力向左【巧解】求解人与板间的摩擦力方向,属求内力,须用隔离法,研究对象可选人,也可以选板,到底选哪个更简单呢?当然选人要简单些,因为人受力个数少,以人为研究对象,人在水平方向上只受绳的拉力(水平向右)和板对人的摩擦力两个力作用,属二力平衡,故板对人的摩擦力向左,由牛顿第三定律可知,人的脚给木板的摩擦力向右,B、D两个选项中B选项正确。绳的拉力属外力,可用整体法来求解,人与板相对地向右运动,滑动摩擦力水平向左,而其大小为12()0.2fNGG;人与板系统水平向右受到两个拉力,故由平衡条件可得:2T=f,故T=100N,答案C选项正确。【答案】B、C)A、A对B没有摩擦力教人以渔终身受用4B、A对B有摩擦力,方向时刻与线速度方向相反C、A对B有摩擦力,方向时刻指向转轴三、力的合成法例1:水平横梁的一端A插在墙壁内,另一端装有一小滑轮B,一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg的重物,∠CBA=30°,如图3-1所示,则滑轮受到绳子的作用力大小为(g取10m/s2)()A、50NB、503NC、100ND、1003N【巧解】绳子对滑轮有两个力的作用,即绳子BC有斜向上的拉力,绳子BD有竖直向下的拉力,故本题所求的作用力应该为以上这两个力的合力,可用力的合成法求解。因同一根绳张力处处相等,都等于物体的重力,即TBC=TBD=mg=100N,而这两个力的夹角又是特殊角120°,用平行四边形定则作图,可知合力F合=100N,所以滑轮受绳的作用力为100N,方向与水平方向成30°角斜向下。【答案】C例2:如图3-2所示,一质量为m的物块,沿固定斜面匀速下滑,斜面的倾角为,物体与斜面间的动摩擦因数为μ,则斜面对物块的作用力大小及方向依次为()A、sinmg,沿斜面向下B、sinmg,沿斜面向上C、cosmg,垂直斜面向下D、mg,竖直向上【巧解】斜面对物块有两个力的作用,一个是沿垂直斜面向上支持力N,另一个是沿斜面向上的摩擦力f,故本题所求的作用力应该为以上这两个力的合力,可用力的合成法求解。物块共受三个力作用:重力mg、支持力N、摩擦力f;由平衡条件可知,这三个力的合力为0,即支持力N、摩擦力f的合力重力mg等大反向,故答案D选项正确【答案】D例3:如图3-3所示,地面上放在一个质量为m的物块,现有斜向上的力F拉物块,物块仍处于静止状态,则拉力F与物体所受到摩擦力f的合力方向为()A、斜向左上B、斜向右上C、竖直向上D、条件不足,无法判断【巧解】物块共受四个力作用,重力G、拉力F、摩擦力f以及支持力N,其受力图如图3-4所示,我们可以用力的合成法,把四力平衡转化成二力平衡:即F与f合成,G与N合成,G与N的合力一定竖直向下,故F与f的合力一定竖直向上,故答案C正确。【答案】C四、力的分解法例1:刀、斧、刨等切削工具都叫劈,劈的截面是一个三角形,如图4-1所示,设劈的面是一个等腰教人以渔终身受用5三角形,劈背的宽度是d,劈的侧面的长度是L使用劈的时候,在劈背上加力F,则劈的两侧面对物体的压力F1、F2为()A、F1=F2=FB、F1=F2=(L/d)FC、F1=F2=(d/L)FD、以上答案都不对【巧解】由于F的作用,使得劈有沿垂直侧面向外挤压与之接触物体的效果,故所求的F1、F2大小等于F的两个分力,可用力的分解法求解。如图4-2所示,将F分解为两个垂直于侧面向下的力F1′、F2′,由对称性可知,F1′=F2′,根据力的矢量三角形△OFF1与几何三角形△CAB相似,故可得:F1′/L=F/d,所以F1′=F2′=LF/d,由于F1=F1′,F2=F2′故F1=F2=(d/L)F。【答案】例2:如图4-3所示,两完全相同的小球在挡板作用下静止在倾角为的光滑斜面上,甲图中挡板为竖直方向,乙图中挡板与斜面垂直,则甲、乙两种情况下小球对斜面的压力之比是()A、1:1B、1:2cosC、1:2sinD、1:tan【巧解】由于小球重力G的作用,使得小球有沿垂直侧面向下挤压斜面及沿垂直挡板方向挤压挡板的效果,故所求的小球对斜面压力大小等于重力G沿垂直斜面方向的分力,可用力的分解法求解,如图所求,甲情况下将G分解G2,乙情况下将G分解G2′,所求压力之比即为G1:G1′,而G1=G/cos,G1′=Gcos,故可得压力之比G1:G1′=1:2cos。【答案】B例3:如图4-4所示,用两根轻绳将质量为m的物块悬挂在空中,已知ac和bc与竖直方向的夹角分别为30°和60°,则ac绳和bc绳中拉分别为()A、31,22mgmgB、13,22mgmgC、31,42mgmgD、13,24mgmg【巧解】由于小球重力G的作用,使得小球有沿两绳方向斜向下拉紧绳的效果,故两绳的拉力大小等于重力的两个分力,力的分解图如上所示,由几何知识可得:教人以渔终身受用6Tac=G1=mgcos30°,Tbc=G2=mgcos60°。【答案】A例4:如图4-5所示,小车上固定着一根弯成角的曲杆,杆的另一端固定一个质量为m的球,小车以加速度a水平向右运动,则杆对球的弹力大小及方向是()A、mg,竖直向上B、22()()mgma,沿杆向上C、ma,水平向右D、22()()mgma,与水平方向成arctanmgma角斜向上【巧解】本题中,小球只受重力mg和杆对球的弹力N两个力作用,杆对球的弹力N有两个作用效果;竖直向上拉小球及水平向右拉小球,因两个作用效果是明确的,故可用力的分解法来求解。杆竖直向上拉小球,使小球在竖直方向上保持平衡,故竖直向上的分力N1=mg;杆水平向右拉小球,使小球获得向右的加速度,故水平向右的分力N2=ma,由几何知识可知杆对球的弹力与水平方向的夹角为arctan12NN=arctanmgma,故答案D选项正确。【答案】D