(1999)_ARTICLES_-_Finite_Difference_Methods_and_Sp

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

FINITEDIFFERENCEMETHODSANDSPATIALAPOSTERIORIERRORESTIMATESFORSOLVINGPARABOLICEQUATIONSINTHREESPACEDIMENSIONSONGRIDSWITHIRREGULARNODESPETERK.MOOREySIAMJ.NUMER.ANAL.c°1999SocietyforIndustrialandAppliedMathematicsVol.36,No.4,pp.1044{1064Abstract.Adaptivemethodsforsolvingsystemsofpartialdi erentialequationshavebecomewidespread.Muchofthee orthasfocusedon niteelementmethods.Inthispapermodi ed nitedi erenceapproximationsareobtainedforgridswithirregularnodes.Themodi cationsarerequiredtoensureconsistencyandstability.Asymptoticallyexactaposteriorierrorestimatesofthespatialerrorarepresentedforthe nitedi erencemethod.Theseestimatesarederivedfrominterpolationestimatesandarecomputedusingcentraldi erenceapproximationsofsecondderivativesofthesolutionatgridnodes.Theinterpolationerrorestimatesareshowntoconvergeforirregulargridswhiletheaposteriorierrorestimatesareshowntoconvergeforuniformgrids.Computationalresultsdemonstratetheconvergenceofthe nitedi erencemethodandaposteriorierrorestimatesforcasesnotcoveredbythetheory.Keywords. nitedi erencemethods,aposteriorierrorestimates,irregulargridsAMSsubjectclassi cations.65M06,65M15,65M50PII.S00361429973220721.Introduction.Adaptivemethodsforsolvingsystemsofpartialdi erentialequationshavebecomewidespread.Robustadaptivesoftwareisnowavailableforproblemsinoneand,toalesserextent,twodimensions[8,10,11].Inthreedimensionsmuchoftheworkhasfocusedontheuseof niteelementand nitevolumemethodsonunstructuredtetrahedralmeshes[17].Hexahedralgridshavealsobeenproposed[18,19].Thesemeshestypicallyhaveirregular(hanging)nodes[3,15,18]atwhichcontinuityisenforced.Aposteriorierrorestimatesfor niteelementmethodsonhexahedralgridswithoutirregularnodescanbeobtainedbygeneralizingthetwo-dimensionalestimatesof[1,2].Residual-basedestimatesforgridswithirregularnodesforellipticproblemshavealsobeendeveloped[19].Theseestimatesarenotasymptoticallyexact.Inthispapermodi ed nitedi erencemethodsandasymptoticallyexactapos-teriorierrorestimatesarepresentedforsolvingparabolicequationsoftheformut+f(x;t)=u;x=(x;y;z)2­[x0;x1][y0;y1][z0;z1];t0;u(x;0)=u0(x);x2­;(1)togetherwithDirichletboundaryconditionsongridswithirregularnodes.Thefamil-iar nitedi erencestencilsmustbemodi edtoaccountforthegridirregularity.Theresultingsystemofdi erential-algebraicequationsisintegratedusingeitherthefor-wardEulermethodorthemultisteppackageDASPK[7].Throughout,thetemporalReceivedbytheeditorsMay30,1997;acceptedforpublication(inrevisedform)July6,1998;publishedelectronicallyMay26,1999.ThisresearchwaspartiallysupportedbyDepartmentofEnergygrantDOE-FG01-93EW53023andbytheNationalScienceFoundationthroughtheInstituteforMathematicsandItsApplicationsattheUniversityofMinnesota.(pkm@math.tulane.edu).1044FINITEDIFFERENCEMETHODSONIRREGULARGRIDS1045integrationisdoneinsuchawaythatthespatialerrordominatesthetemporalerror.Extensionsofuniformgridaposteriorierrorestimates[2,21]areneededtoaccountfortheirregularnodes.De nitionsofadmissibleandcomputablegridsforsolving(1)andrulesgoverninggridre nementandcoarseningarepresentedinsection2.Theone-irregularandk-neighborruleswereintroducedby[6]fortwo-dimensionalgrids.Anadditionalrule,thesiblingrule,isproposedsothaterrorestimatesandconsistent nitedi erenceapproximationscanbecomputed.Iprovethattheone-irregularrulerestrictsthenumberandpositionofirregularnodesonanelementtoeightcases.Ialsoprovethatthesiblingrulelimitsthetypesofregularnodesthatcanoccur.Thepapercontainstwomajorresults.The rst(section3)providesformulasfortheinterpolationerroronelementswithirregularnodes.Theseformulas,asintheuniformgridcase,dependonsecondderivativesofthesolution,butinamorecompli-catedfashion.Iprovethat\aposterioriestimatesoftheinterpolationerrorcanbeobtainedusingtheseformulasandestimatesofthesecondderivativescomputedfromcentraldi erenceapproximationsofthetheinterpolatingpolynomial.Thesecondkeyresult(section4)showsthatinthecaseofuniformgridstheformulasfortheaposterioriinterpolationerrorestimateswiththeinterpolatedvaluesreplacedbythe nitedi erencesolutionareasymptoticallyexactaposteriorispatialerrorestimatesofthe nitedi erencesolution.Modi ed nitedi erenceapproximationsforirregulargridsarederivedinsection4andareshowntoconverge.Computationsinsection5suggestthattheseaposteriorierrorestimatescanbeextendedtoirregulargridsusingtheresultsofsection3.Someconclusionsarepresentedinsection6.2.Gridde nition.Thegrid,­,for­willbeobtainedbyrecursivetrisection,beginningwith­.Thus,thegridhasanoctreestructurewiththerootcorrespondingto­.Theleafverticesofthetreearecalledelements(unre nedelementsin[20]).Thelevelofanelementinthegridisthelengthofthepathfromtheroottotheelement.Avertexwitheightsubverticesisreferredtoasaparentvertexandtheeightsubverticesareitso springorchildren.Eightverticeshavingacommonparentarecalledsiblings.Agridissaidtobeuniformifallitselementsareatthesamelevel.AgridisadmissibleinthesenseofBabuskaandRheinboldt[4,5]ifitisde nedrecursivelybythefollowingt

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功