1商品煤的采样和制样第一节煤的不均匀性第二节采制样原理第三节煤炭采样和制样概述第四节人工采样与制样第五节煤炭机械化采制样(GB/T19494-2004)第六节精密度和偏倚试验2第一节煤的不均匀性一、不均匀性概念对于散装物料,如果物料各部分的某一特性指标的变动性与测定该特性指标的方法方差具有一致性,此物料就该特性指标而言是均匀的。如面粉、汽油、化肥等属于均匀物料。否则是不均匀的。而煤炭是一种品质极不均匀的大棕散装固体矿物燃料。煤炭的不均匀性可从以下几方面认识:1)煤的组成的不均匀性煤炭是由古代植物遗体覆盖在地层下,压实,经复杂的生物化学和物理化学作用转化而成固体有机可燃沉积岩,其组成元素达数十种,可看成是水分、无机矿物质和有机质组成的复杂的三元混合物。无机矿物质主要为粘土矿物、石英、碳酸盐、硫酸盐、硫铁矿和碱金属碱土金属等。矿物质在煤中通常有两种状态,一种是与煤中有机质相结合的矿物质,分布均匀,它成煤的原始植物在生长过程中从土壤中吸收来的和煤形成过程中经煤层裂缝渗入的矿物质溶液积聚而成,这部分含量不大;另一种是游离状态的,俗称游离矿物质,它源于煤炭采掘中矿井的底板、顶板或煤层夹石的机械混入,有时也会与伴生矿物质一起混入,这部分含量较大,分布极不均匀。游离矿物质的存在及其分布状态是决定煤不均匀度的主要因素。而有机物则包括丝炭、镜煤、暗煤、亮煤,分布较均匀,其性质和组成也大相径庭,例如丝炭的灰分最高,比重也最大,暗煤次之,镜煤、亮煤最小。2)粒度不均匀性煤炭是属于脆性物料,在采掘、加工和运输过程中由于各组分的坚固性不同容易碎裂成大小不同的粒度。表1为某煤矿出矿煤不同粒级范围煤的灰分情况,它随着粒级范围平均粒径的减小而减少,绝大多数出矿原煤都存在这一特征。对于煤粉,也同样存在着不同粒级范围煤的灰分产率不相同的现象,不过它与制粉的工艺条件密切相关。火电厂制粉系统(动态)制备的煤粉和实验室制粉设备(静态)磨制的煤粉,两者不同粒级范围的灰分分别列于表2和表3。从表中可以看出,前者粒级范围平均粒径愈小,灰分愈高,而后者则相反,粒级范围平均粒径愈小,则其灰分愈低,这种相反的规律性,与磨制煤粉的工艺条件密切相关。制粉系统中的煤粉是在有热风输送、干燥和分离作用的条件下磨制的。它能够将达到一定粒度要求的相对粒度较粗而密度较小的煤粉,借助热风及时输送到磨煤机外面而不至于继续磨细。同样粒度较粗密度较大的煤,则必须磨制到较小粒度才能被热风带出磨煤机外,且密度愈大的粒度,则需磨到的粒径较小其灰分愈高。然而对于试验室磨煤机就不同了,那些质地好、容易磨成粉且达到一定粒度要求的相对较粗粒度的煤粉,仍滞留在磨煤机继续被磨得更细了,因此,呈现出灰分产率随着粒级范围平均粒径变小而降低的规律。由此可见,不同粒度的煤具有相异的煤质特性乃是煤炭的普遍现象。3表1出矿煤不同粒级范围的灰分粒级范围(mm)徐家沟(Ad,%)粒级范围(mm)王家凹(Ad,%)100100~5050~2525~1313~071.954.844.732.623.45050~2525~1313~059.331.823.218.5表2中贮式制粉系统中煤粉不同粒级范围的灰分粒级范围(mm)大同煤(Ad,%)大同和峰峰混煤(Ad,%)海川和三元混煤(Ad,%)200200~9090~60605.37.18.411.610.415.317.023.620.323.126.539.2表3实验室煤粉不同粒级范围的灰分(Ad,%)粒级范围(mm)灰分20035.20200~7432.117428.0O3)分聚和偏析作用煤炭按粒度大小不同的自然分聚现象,叫做分聚作用。按质量不同的自然偏析现象,叫做偏析作用。煤炭分聚偏析作用,加大了煤质的不均匀性。商品煤是由大到小不同级别的粒度组成,煤在流动和堆积中会形成一个不均匀体。例如从筒仓往火车装煤时,大块煤跑到车体两边,小粒煤或粉煤则落到中心;还如贮煤场堆煤时也会产生大块煤聚集在堆底周围的现象。又如带式输送机输煤时皮带两旁粒度大的煤多;皮带端部下落煤流中大小粒度煤的分离等等。即使粒度相同,4由于煤中矿物质和有机质含量的不同而造成质量不同,质量轻的煤会集中在上部,而质量大的煤会集中在下部。4)加工处理这里是指原煤是否经洗选或其他工艺加工。加工过的煤,去除了大部分游离矿物质,一般粒级范围较小,较均匀,同时,近似相同粒度间的密度之差也较未加工前减小,尤其是洗煤产品,因此其均匀性当然要比未经洗选的原煤好。总而言之煤炭是一种粒度和组成极不均匀大宗固体散装物料。二不均匀类型对于煤这种不均匀物料可分解为组成不均匀和分布不均匀。组成不均匀性是构成该物料的不同成分(如颗粒)之间的组成不同,混和不能影响组成不均匀,但破碎后颗粒数增加,组成不均匀会显著改善;分布不均匀性是构成该物料的不同成分的局部不均匀如偏析、不同部位、不同煤层等,混合可显著改善这种不均匀性。根据煤的特性值分布情况,有如下不均匀类型:1)较均匀如洗精煤2)随机不均匀是指煤的特性值服从或大体服从正态分布。如同一来源即同一煤层短期生产加工的煤。3)定向非随机不均匀是指煤的特性值沿着一定方向改变。例如煤炭在输送时,由于颗粒大小、轻重不同引起的垂直方向分离。洗煤在运送时水分沿车箱深度的分布。4)周期非随机不均匀是指在连续的煤流中煤的特性值呈现出周期性变化,其变化周期有一定的频率和幅度。例如电厂入炉煤混配时。5)混合非随机不均匀是指两种以上特性值变异类型或两种以上特性均值合并后的煤。例如,不同产地的两种煤,掺矸煤,掺假煤。三不均匀度煤的不均匀度是煤的不均匀性的量度,是表征煤质指标分散性大小的物理量,一般用初级子样的方差VI表示。通常以煤中分布最不均匀的灰分(水分、热值)的初级子样方差VI表示。初级子样方差愈大,煤的不均匀度愈大。如前所述它与煤中矿物质的分布状态、煤的粒度、偏析程度和煤有否加工等密切相关。另外与是否混配有关,混煤的不均匀性一般要比参与混合的任一品种煤都大。根据有关试验资料,商品煤的初级子样方差如表4所示。初级子样方差VI可按GB/T19494.3-2004来测定或估计。5表4商品煤的不均匀度(初级子样方差)品种灰分(Ad,%)初级子样方差原煤、筛选煤≤10310--201520--304830-4068洗精煤3其它洗煤4总之,不均匀性的存在是煤炭的一种属性,是不可避免的,是客观存在的,它可通过检测数据来估计,也可根据经验和已掌握的物料信息来推断。了解煤炭的不均匀性,对于编制采样方案和指导采样过程具有重要意义。第二节采制样原理一、抽样检验基础理论一)概率基础随机事件概率随机变量概率分布二)数理统计基础个体样本总体统计推断二抽样的基本要求和抽样方法一)抽样的基本要求①每个个体抽取随机的②每个个体是独立的,彼此互不影响③样本与总体同分布,即抽取每个个体抽取时,每一次抽样都是在完全相同的条件下进行。根据大数定理,独立同分布的随机变量的样本均值在样本容量足够大时以很大的概率接近其期望值.这是用样本均值推断总体均值的理论基础.根据中心极限定理多个独立同分布的随机变量或多个独立6不一定同分布但均匀的小的随机变量总和的分布在样本容量足够大时服从正态分布.正态分布是统计推断的理论基础.(一)随机事件及概率1.随机事件的基本概念(1)随机试验:在对一批产品的抽检中,如果我们任取5件检查它是否合格,显然,每进行一次抽检,测试的结果都是事先无法确定的。虽然每进行一次试验就会有一个结果,但如果我们大量重复这种试验,其结果就会呈现出固有的规律性,即统计规律性,我们把这样的试验称为随机试验。随机试验有如下三个特征。①试验在相同的条件下重复进行。②每次试验结果不一定相同,且每次试验之前不能断定是哪一个结果的发生。③所有可能的试验结果是事先可断定的。(2)随机事件:随机试验(常用E表示)的每一个可能结果称为一个随机事件,简称事件。如上例对一批产品随机抽取5件来检查,其结果可能是:没有不合格品、有一件不合格品、有两件不合格品、……全是不合格品。这些都是随机事件,因其不可再分又称为基本事件,通常用符号A,B…表示。一个随机事件可以由若干个基本事件共同组合而成,例如上述随机试验中,“至多有一件不合格品’’这个随机事件是由“没有不合格品”和“有一件不合格品”所组成,像这样由基本事件复合而成的事件称为复合事件。在各种各样的试验中,可能会遇到这样的情况,如现有4件同类产品,其中有1件次品,3件正品。若任取2件为一组,则每次试验的结果必然是“至少有1件是正品”。像这样每次试验都必然发生的事件称为必然事件,通常用字母Ω表示。上述4件同类产品中,若任取2件为一组,“2件都是次品”的事件不可能发生,像这种每次试验中不可能发生事件称为不可能事件,通常用字母Φ表示。必然事件和不可能事件并不具有“不确定性”,为了便于讨论可把它看成是随机事件的极端情况。(3)基本事件空间:基本事件的全体所组成的集合称为随机试验的基本事件空间又称样本空间,用字母Ω表示。事件是基本事件空间的一个子集,因为基本事件空间包括随机试验所有可能的结果,所以如果把基本事件空间看成一个事件,那么它是一个必然事件,因此,事件空间和必然事件均可用同一符号n表示,基本事件空间的元素就是随机试验的基本事件。但要注意:样本空间元素是由实验的内容所确定的。例如,一7批产品,任取其中1件产品,检验它是正品还是次品,则有两种可能的结果:正品、次品。于是基本事件空间由两个基本事件构成,即Q一{正品,次品)由此可见,基本事件空间完全是由试验内容所决定的。2.随机事件的概率1)随机事件的频率将一随机试验重复独立地进行n次,若事件A出现的次数为以n(频数),则其比值A)一坠称为事件A在行次试验中出现的频率。在多次重复试验中,事件A发生次数越多,频率就越大,反映了事件A发生的可能性越大。因此,在实际应用中,人们常用频率^(A)来度量事件A发生的可能性大小。[例2—1]甲、乙两人生产同一种零件,甲生产200件中有6件不合格,乙生产1000件中有15件不合格,问谁生产技术水平高?解:设Az{甲生产的零件中不合格品}B一{Z.牛产的零件中不合格品),则因f2。。(A),·ooo(B),故乙生产技术水平商。实践证明,当试验条件不变,试验次数足够多时,随机事件A的频率f”(A)常在某个确定的数字P附近波动,随着试验次数不断增加,这种波动会越来越小,事件频率的这种性质称为频率的稳定性。例如,抛一硬币,观察正、反两面出现的次数。当抛币次数较少时,可能正反两面出现频率差异较大,但随着抛币次数的增多,正面出现频率呈现稳定性,其结果总是在二分之一附近摆动,并逐渐趋于1/2。表2—1是著名经济学家蒲丰(Buffon)和皮尔逊(Pearson)进行大量抛币实验的结果。表2—1抛币试验的结果抛币次数正面出现的次数频率P40401200020486019o.5069O.501624000120120.5005可以看出,抛币次数越多,频率越接近1/2。(2)随机事件的概率①概率定义频率的稳定性表明在大量重复试验中,事件A在竹次试验中发生的频率f。(A)在一确定的数值P附近摆动,随着试验次数的增加,这种摆动幅度越来越小,把这个8确定的数值P称为事件A发生的概率,记作P(A)一P在实际问题中,当试验次数挖足够大时,可用事件的频率近似代替概率。如我们在实际工作中经常遇到的次品率、成功率、回报率等都是频率转化成了概率,这样求得的称为统计概率。②概率的性质概率a.概率的取值范围0≤P(A)≤1P(Ω)=1,P(Φ)=0b.概率的加法定律·若事件A,B为互斥事件(不会同时发生),即AB一垂,则有:P(AUB)一P(A)-tiP(B),此结论可推广到任意多个两两互斥的事件。·若事件A,万为互补事件(当A不发生时,万就发生且仅有一个9发生),则:P(A)+P(A)一1或P(A)一1一P(A)。·若事件A,B为任意两事件,则:P(AUB)一P(A)+P(B)一P(AB),此性质可推广到多个事件的情况。C.概率的乘法定律若A,,A。,…,A。为相互独立的事件,则:P(