小升初奥数“310”个必备知识点总结称球问题[专题介绍]称球问题是一类传统的趣味数学问题,它锻炼着一代又一代人的智力,历久不衰。下面几道称球趣题,请你先仔细考虑一番,然后再阅读解答,想来你一定会有所收获。[经典例题]例1有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。解:依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。例2有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。解:第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。例3把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。(3)若A<B,类似于A>B的情况,可分析得出结论。练习有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?循环小数循环小数一、把循环小数的小数部分化成分数的规则①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。二、分数转化成循环小数的判断方法:()①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。六年奥数知识讲解:简单方程简单方程代数式:用运算符号(加减乘除)连接起来的字母或者数字。方程:含有未知数的等式叫方程。列方程:把两个或几个相等的代数式用等号连起来。列方程关键问题:用两个以上的不同代数式表示同一个数。等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。移项:把数或式子改变符号后从方程等号的一边移到另一边;移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。移项关键问题:运用等式的性质,移项规则,加、去括号规则。乘法分配率:a(b+c)=ab+ac解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;方程组:几个二元一次方程组成的一组方程。解方程组的步骤:①消元;②按一元一次方程步骤。消元的方法:①加减消元;②代入消元。六年奥数知识讲解:浓度与配比浓度与配比经验总结:在配比的过程中存在这样的一个反比例关系,进行混合的两种溶液的重量和他们浓度的变化成反比。溶质:溶解在其它物质里的物质(例如糖、盐、酒精等)叫溶质。溶剂:溶解其它物质的物质(例如水、汽油等)叫溶剂。溶液:溶质和溶剂混合成的液体(例如盐水、糖水等)叫溶液。基本公式:溶液重量=溶质重量+溶剂重量;溶质重量=溶液重量×浓度;浓度=×100%=×100%理论部分小练习:试推出溶质、溶液、溶剂三者的其它公式。经验总结:在配比的过程中存在这样的一个反比例关系,进行混合的两种溶液的重量和他们浓度的变化成反比。六年奥数知识讲解:时钟问题—快慢表问题时钟问题—快慢表问题基本思路:1、按照行程问题中的思维方法解题;2、不同的表当成速度不同的运动物体;3、路程的单位是分格(表一周为60分格);4、时间是标准表所经过的时间;5、合理利用行程问题中的比例关系;六年奥数知识讲解:逻辑推理问题逻辑推理基本方法简介:①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。年奥数知识讲解:综合行程问题综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。过桥问题:关键是确定物体所运动的路程,参照以上公式。主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。六年奥数知识讲解:完全平方数完全平方数完全平方数特征:1.末位数字只能是:0、1、4、5、6、9;反之不成立。2.除以3余0或余1;反之不成立。3.除以4余0或余1;反之不成立。4.约数个数为奇数;反之成立。5.奇数的平方的十位数字为偶数;反之不成立。6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。7.两个相临整数的平方之间不可能再有平方数。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2六年奥数知识讲解:分数与百分数的应用分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。分数单位:把单位“1”平均分成几份,表示这样一份的数。百分数:表示一个数是另一个数百分之几的数。常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。⑧浓度配比法:一般应用于总量和分量都发生变化的状况。六年奥数知识讲解:余数及其应用余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0rb,那么r叫做a除以b的余数,q叫做a除以b的不完全商。余数的性质:①余数小于除数。②若a、b除以c的余数相同,则c|a-b或c|b-a。③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。六年奥数知识讲解:约数与倍数约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。2、几个数的最大公约数都是这几个数的约数。3、几个数的公约数,都是这几个数的最大公约数的约数。4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。2、短除法:先找公有的约数,然后相乘。3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法六年奥数知识讲解:加法原理加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。关键问题:确定工作的分类方法。基本特征:每一种方法都可完成任务。乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。关键问题:确定工作的完成步骤。基本特征:每一步只能完成任务的一部分。直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。直线特点:没有端点