高考数列常考题型归纳总结类型1an+1=an+f(n解法:把原递推公式转化为an+1-an=f(n,利用累加法(逐差相加法求解。例:已知数列{an}满足a1=解:由条件知:an+1-an=12,an+1=an+1=11n+n2,求an。-1n+1n+n2n(n+1=1n分别令n=1,2,3,⋅⋅⋅⋅⋅⋅,(n-1,代入上式得(n-1个等式累加之,即(a2-a1+(a3-a2+(a4-a3+⋅⋅⋅⋅⋅⋅+(an-an-1=(1-12+(12-13+(1n13-14+⋅⋅⋅⋅⋅⋅+(1n-1-1n所以an-a1=1-a1=1212+1-1n=32-1n,∴an=类型2an+1=f(nan解法:把原递推公式转化为23an+1an=f(n,利用累乘法(逐商相乘法求解。nn+1例:已知数列{an}满足a1=解:由条件知之,即a2a1∙a3a2∙a4a323,an+1=an,求an。an+1an=nn+1,分别令n=1,2,3,⋅⋅⋅⋅⋅⋅,(n-1,代入上式得(n-1个等式累乘∙⋅⋅⋅⋅⋅⋅∙anan-123n=12⨯23⨯34⨯⋅⋅⋅⋅⋅⋅⨯n-1n⇒ana1=1n又a1=,∴an=例:已知a1=3,an+1=解:an=3(n-1-13(n-1+23n-43n-13n-13n+2an(n≥1,求an。∙3(n-2-13(n-2+27⋅4∙⋅⋅⋅∙3⨯2-13⨯2+26∙3-13+2a1=⋅3n-3n-52⋅⋅3=85n-3。1变式:(2004,全国I,理15.)已知数列{an},满足a1=1,an=a1+2a2+3a3+⋅⋅⋅+(n-1an-1(n≥2,则{an}的通项an=⎨⎧1⎩___n=1n≥2解:由已知,得an+1=a1+2a2+3a3+⋅⋅⋅+(n-1an-1+nan,用此式减去已知式,得当n≥2时,an+1-an=nan,即an+1=(n+1an,又a2=a1=1,∴a1=1,a2a1=1,a3a2=3,a4a3=4,⋅⋅⋅,anan-1=n,将以上n个式子相乘,得an=n!2(n≥2类型3an+1=pan+q(其中p,q均为常数,(pq(p-1≠0)。解法(待定系数法):把原递推公式转化为:an+1-t=p(an-t,其中t=换元法转化为等比数列求解。例:已知数列{an}中,a1=1,an+1=2an+3,求an.解:设递推公式an+1=2an+3可以转化为an+1-t=2(an-t即an+1=2an-t⇒t=-3.故递推公式为an+1+3=2(an+3,令bn=an+3,则b1=a1+3=4,且bn+1bn=an+1+3an+3=2.q1-p,再利用n-1n+1=2所以{bn}是以b1=4为首项,2为公比的等比数列,则bn=4⨯2,所以an=2n+1-3.变式:(2006,重庆,文,14)在数列{an}中,若a1=1,an+1=2an+3(n≥1,则该数列的通项an=_______________(key:an=2n+1-3)变式:(2006.福建.理22.本小题满分14分)已知数列{an}满足a1=1,an+1=2an+1(n∈N*.(I)求数列{an}的通项公式;(II)若数列{bn}滿足4b-14b12-14bn-1=(an+1n(n∈N,证明:数列{bn}是等差数列;b*(Ⅲ)证明:n12-13aa+a2n∈N*.2a+...+an3an+12(n(I)解:an+1=2an+1(n∈N*,∴an+1+1=2(an+1,∴{an+1}是以a1+1=2为首项,2为公比的等比数列∴ann+1=2.即an*n=2-1(n∈N.(II)证法一:4k1-14k2-1...4kn-1=(an+1kn.∴4(k1+k2+...+kn-n=2nkn.∴2[(b1+b2+...+bn-n]=nbn,2[(b1+b2+...+bn+bn+1-(n+1]=(n+1bn+1.②-①,得2(bn+1-1=(n+1bn+1-nbn,即(n-1bn+1-nbn+2=0,nbn+2-(n+1bn+1+2=0.③-④,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N*,∴{bn}是等差数列①②证法二:同证法一,得(n-1bn+1-nbn+2=0令n=1,得b1=2.设b2=2+d(d∈R,下面用数学归纳法证明bn=2+(n-1d.(1)当n=1,2时,等式成立(2)假设当n=k(k≥2时,bk=2+(k-1d,那么bk+1=kk-1bk-2=k[2+(k-1d]-2k-1k-1k-1这就是说,当n=k+1=2+[(k+1-1]d.根据(1)和(2),可知bn=2+(n-1d对任何n∈N*bn+1-bn=d,∴{bn}(III)证明:akak+1=2-12k+1k-1=2-12(2-kk1212,k=1,2,...,n,∴a1a2ak+a2a3=+...+anan+1=12n2.2-12k+1kak+1-1-12(2k+1-1=12-13.2+2-2kk≥12-11.k,k=1,2,...,n,32∴a1a2n2+a2a3+...+anan+1≥n2-1111n11n1(+2+...+n=-(1-n-,322223223n2∴-13a1a2+a2a3+...+anan+1(n∈N.*变式:递推式:an+1=pan+f(n。解法:只需构造数列{bn},消去f(n带来的差异.n类型4an+1=pan+q(其中p,q均为常数,(pq(p-1(q-1≠0)。(或an+1=pan+rq,其中p,q,r均为常数)。n解法:一般地,要先在原递推公式两边同除以qn+1,得:an+1qn+1=pq∙anqn+1q引入辅助数列{bn}(其中bn=anqn),得:bn+1=pqbn+1q再待定系数法解决。例:已知数列{an}中,a1=解:在an+1=156,an+1=11n+1an+(,求an。321n+12nn+1an+(两边乘以2n+1得:2∙an+1=(2∙an+132322令bn=2n∙an,则bn+1=bn+1,解之得:bn=3-2(n33所以an=bn2n1n1n=3(-2(23变式:(2006,全国I,理22,本小题满分12分)设数列{an}的前n项的和Sn=43an-13⨯2n+1+23,n=1,2,3,(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn=2nnSn23,n=1,2,3,,证明:∑Tii=132解:(I)当n=1时,a1=S1=当n≥243a1-43+43⇒a1=2;13n+1时n,an=Sn-Sn-1=nan-⨯2+23-(43an-1-13⨯2+n23,即an=4an-1+2,利用an+1=pan+q(其中p,q均为常数,(pq(p-1(q-1≠0)。nnn(或an+1=pan+rq,其中p,q,r均为常数)的方法,解之得:an=4-24121nnnnn+1n+1n+1(Ⅱ将an=4-2代入①得Sn=×(4-2-2+=×(2-1(2-233332=(2n+1-1(2n-132n32n311Tn===(-Sn2(2-1(2-122-12-13n113113所以,∑Ti=∑(-=(-2i=12-12-122-12-12i=1n类型5递推公式为an+2=pan+1+qan(其中p,q均为常数)。解法一(待定系数法:先把原递推公式转化为an+2-san+1=t(an+1-san⎧s+t=p其中s,t满足⎨st=-q⎩解法二(特征根法:对于由递推公式an+2=pan+1+qan,a1=α,a2=β给出的数列{an},方程x2-px-q=0,叫做数列{an}的特征方程。若x1,x2是特征方程的两个根,当x1≠x2n-1时,数列{an}的通项为an=Ax1n-1+Bx2,其中A,B由a1=α,a2=β决定(即把代入an=Ax1a1,a2,x1,x2和n=1,2,n-1+Bx2n-1,得到关于A、B的方程组);当x1=x2时,n-1数列{an}的通项为an=(A+Bnx1,其中A,B由a1=α,a2=β决定(即把a1,a2,x1,x2n-1和n=1,2,代入an=(A+Bnx1,得到关于A、B的方程组)。解法一(待定系数——迭加法):数列{an}:3an+2-5an+1+2an=0(n≥0,n∈N,a1=a,a2=b,求数列{an}的通项公式。由3an+2-5an+1+2an=0,得an+2-an+1=23(an+1-an,且a2-a1=b-a。则数列{an+1-an}是以b-a为首项,23为公比的等比数列,于是2n-1an+1-an=(b-a(。把n=1,2,3,⋅⋅⋅,n代入,得3a2-a1=b-a,2a3-a2=(b-a⋅(,322a4-a3=(b-a⋅(,3∙∙∙2n-2an-an-1=(b-a(。3把以上各式相加,得2n-11-(222n-23(b-a。an-a1=(b-a[1++(+⋅⋅⋅+(]=23331-32n-12n-1∴an=[3-3(](b-a+a=3(a-b(+3b-2a。33解法二(特征根法):数列{an}:3an+2-5an+1+2an=0(n≥0,n∈N,a1=a,a2=b的特征方程是:3x2-5x+2=0。x1=1,x2=23,n-1∴an=Ax1n-1+Bx22n-1=A+B⋅(。3又由a1=a,a2=b,于是⎧a=A+B⎧A=3b-2a⎪⇒2⎨⎨B=3(a-b⎩⎪b=A+B3⎩故an=3b-2a+3(a-b(32n-123an+1+13an,求an。例:已知数列{an}中,a1=1,a2=2,an+2=解:由an+2=23an+1+13an可转化为an+2-san+1=t(an+1-san即an+2=(s+tan+1-stan2⎧1s+t=⎧s=1⎧⎪⎪⎪⎪s=-3⇒⎨⇒⎨31或⎨1t=-⎪⎪t=1⎪st=-3⎩⎩⎪3⎩1⎧s=1⎧⎪⎪s=-这里不妨选用⎨,则3,大家可以试一试)1(当然也可选用⎨t=-⎪⎪t=13⎩⎩an+2-an+1=-13(an+1-an⇒{an+1-an}是以首项为a2-a1=1,公比为-1n-113的等比数列,所以an+1-an=(-3,应用类型1的方法,分别令n=1,2,3,⋅⋅⋅⋅⋅⋅,(n-1,代入上式得1n-11-(-3=11+310111n-2(n-1个等式累加之,即an-a1=(-+(-+⋅⋅⋅⋅⋅⋅+(-333又a1=1,所以an=74-34(-13n-1。变式:(2006,福建,文,22,本小题满分14分)已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*.(I)证明:数列{an+1-an}是等比数列;(II)求数列{an}的通项公式;(III)若数列{bn}满足4b1-14b2-1...4bn-1=(an+1n(n∈N,证明{bn}是等差数列b*(I)证明:an+2=3an+1-2an,∴an+2-an+1=2(an+1-an,a1=1,a2=3,∴an+2-an+1an+1-an=2(n∈N.*∴{an+1-an}是以a2-a1=2为首项,2为公比的等比数列n*(II)解:由(I)得an+1-an=2(n∈N,∴an=(an-an-1+(an-1-an-2+...+(a2-a1+a1=2n-1n+2n-2+...+2+1*=2-1(n∈N.(III)证明:4∴4(b1+b2+...+bnb1-14b2-1...4bn-1=(an+1n,b=2nbn,∴2[(b1+b2+...+bn-n]=nbn,①2[(b1+b2+...+bn+bn+1-(n+1]=(n+1bn+1.②②-①,得2(bn+1-1=(n+1bn+1-nbn,即(n-1bn+1-nbn+2=0.③nbn+2-(n+1bn+1+2=0.④④-③,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N,*∴{bn}是等差数列类型6递推公式为Sn与an的关系式。(或Sn=f(an解法:这种类型一般利用⎧S1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅