33120132JOURNALOFGEODESYANDGEODYNAMICSVol.33No.1Feb.20131671-5942201301-0040-05*1213300132()344000、。P207ARESEARCHONPERTURBATIONANALYSISOFTHETOTALLEASTSQUARESWangLeyang121FacultyofGeomaticsEastChinaInstituteofTechnologyNanchang3300132JiangxiProvinceKeyLaboratoryforDigitalLandFuzhou()344000AbstractOnthebasisoftheconditionnumberdefinitionofcoefficientmatrixandfromtheviewpointofnu-mericalanalysistheperturbationanalysisequationsofleastsquaresLSanddataleastsquaresDLSarede-ducedinfollowingcaseswhentheperturbationisonlycontainedintheobservationdatatheperturbationsarecon-tainedintheobservationdataandcoefficientmatrixandtheperturbationisonlycontainedinthecoefficientma-trix.Onthebasisoftheclosed-formexpressionofthetotalleastsquaresTLSsolutionandwiththetoolofthesingularvaluedecompositionSVDtheperturbationanalysisequationofTLSisdeduced.ThroughtheanalysistheperturbationanalysisequationofTLSistheunifiedformoftheperturbationanalysisequationofLSandDLS.KeywordstotalleastsquaresTLSleastsquaresLSdataleastsquaresDLSperturbationanalysiscon-ditionnumber1totalleastsquaresTLSGol-ubVanLoan119802-5。、、2*2012-07-1241204003DHBK201113DLLJ2012071983.E-mailwleyang@163.com16、7。2Golub-VanLoan8。8。、、。、。22.1AX≈b1A∈Rm×nm>nX∈Rn×1b∈Rm×1。ALSNX=L2N=ATAL=ATbbδb1LSX^lsbδbδXXNX+δX=L+δL3δL=ATδb。X^ls=X+δX4NX=L≠0NδX=δL5‖δX‖≤‖N-1‖‖δL‖61‖X‖≤‖N‖‖L‖7‖δX‖‖X‖≤‖N‖‖N-1‖‖δL‖‖L‖8N910condN=‖N‖p‖N-1‖p9‖·‖ppp1、2∞。8bLSX^ls‖δL‖/‖L‖‖N‖‖N-1‖condNcondNcondN1condN。2.21AbLSdataleastsquaresDLS112。NδN1DLSX^dlsNδNδ珚XX。AX=bA+δAX+δ珚X=bAδ珚X+δAδ珚X+δAX=0ATATAδ珚X+ATδAδ珚X+ATδAX=0A+δATA+δAX+δ珚X=A+δATbN+δNX+δ珚X+ATδAX+ATδAδ珚X+δATAδ珚X=LN+δNX+δ珚X+δATAδ珚X-ATAδ珚X=LδATAδ珚X-ATAδ珚X≈0N+δNX+δ珚XL10δN=δATδAδAA。X^dls=X+δ珚X11N+δNδ珚X=-δNX1210‖B‖<1I±B‖I±B-1‖≤11-‖B‖131433‖·‖。‖N-1‖‖δN‖<1N+δN=NI+N-1δN9‖N+δN-1‖≤‖N-1‖1-‖N-1‖‖δN‖1412δ珚X=-N+δN-1δNX15‖δ珚X‖‖X‖≤‖N-1‖‖N‖‖δN‖N1-‖N-1‖‖N‖‖δN‖‖N‖1616condN‖N‖‖N-1‖N‖δN‖/‖N‖‖δ珚X‖/‖X‖‖δN‖/‖N‖‖N‖‖N-1‖。2.31AbLS2NδNbδbδNδbδ珚X'X。AX=bA+δAX+δ珚X'=b+δbAδ珚X'+δAδ珚X'+δAX=δbATATAδ珚X'+ATδAδ珚X'+ATδAX=ATδbA+δATA+δAX+δ珚X'=A+δATb+δbN+δNX+δ珚X'+ATδAX+ATδAδ珚X'+δATAδ珚X'=L+ATδb+δLN+δNX+δ珚X'+δATAδ珚X'-ATAδ珚X=L+δLδATAδ珚X'-ATAδ珚X'≈0N+δNX+δ珚X'L+δL17δL=δATδb。X^'ls=X+δ珚X'18172δ珚X'=N-1δL-N-1δNX-N-1δNδ珚X'1919‖δ珚X'‖≤‖N-1‖‖δL‖+‖N-1‖‖δN‖‖X‖+‖N-1‖‖δN‖‖δ珚X'‖201-‖N-1‖‖δN‖‖δ珚X'‖≤‖N-1‖‖δL‖+‖δN‖‖X‖21δN‖N-1‖‖δN‖<1‖δ珚X'‖≤‖N-1‖1-‖N-1‖‖δN‖‖δL‖+‖δN‖‖X‖222‖L‖≤‖N‖‖X‖231‖X‖≤‖N‖‖L‖242224‖δ珚X'‖‖X‖≤‖N-1‖1-‖N-1‖‖δN‖‖δL‖L‖N‖+‖δN()‖25‖δ珚X‖‖X‖≤‖N‖‖N-1‖1-‖N‖‖N-1‖‖δN‖N‖δL‖‖L‖+‖δN‖‖N()‖2626AbδAδbLS‖δL‖/‖L‖‖δN‖/‖N‖condN‖N‖‖N-1()‖‖δL‖/‖L‖‖δN‖/‖N‖LS‖δL‖/‖L‖‖δN‖/‖N‖condN‖N‖‖N-1()‖LS。31AbTLS2N-σ2n+1IX=L27N=ATAL=ATbσn+1AbAb=U∑VT28U=U1U2U1=u1…unU2=un+1…umui∈Rm×1UTU=ImV=V11V12V21V[]22n1=v1…vn+1vi∈Rn+1×1VTV=In+1241Σ=Σ100Σ[]2=diagσ1…σn+1∈Rm×n+1Σ1=diagσ1…σn∈Rn×nΣ2=σn+10…0T∈Rm-n×1σ1≥…≥σn+1≥0。NδNbδb1TLSX^tlsδNδbδ珛XXATδAX、ATδAδX、δATAX、δATAδX、2σn+1δσn+1X、2σn+1δσn+1δX、ATδbδATbN+δN-σ2n+1+δσn+12IX+δ珛XL+δL29δL=δATδbδσn+1δAδb。X^tls=X+δ珛X302927Nδ珛X=δL-δNX+δσn+12X+σ2n+1δ珛X-δNδ珛X+δσn+12δ珛X3131N-1δ珛X=N-1δL-N-1δNX+N-1δσn+12X+N-1σ2n+1δ珛X-N-1δNδ珛X+N-1δσn+12δ珛X3232‖δ珛X‖≤‖N-1‖‖δL‖+‖N-1‖‖δN‖‖X‖+‖N-1‖‖δN‖‖δ珛X‖+σ2n+1‖N-1‖‖δ珛X‖+δσn+12‖N-1‖‖X‖+δσn+12‖N-1‖‖δ珛X‖331-‖N-1‖‖δN‖-σ2n+1‖N-1‖-δσn+12‖N-1‖‖δ珛X‖≤‖N-1‖‖δL‖+‖δN‖‖X‖+δσn+12‖X‖342-9‖A‖2=λAT槡A=λ槡N35λATA=λNATAN。A210A=U'∑'V'T36U'=U'1U'2U'1=u'1…u'nU'2=u'n+1…u'mu'j∈Rm×1U'TU'=ImV=v'1…v'nv'i∈Rn×1V'TV'=InΣ'=diagσ'1…σ'n∈Rm×nσ'1≥…≥σ'n≥0。AATAN36‖N‖2=σ'2137212σ1≥σ'1≥…≥σn≥σ'n≥σn+1380<σ2n+1‖N-1‖=σ2n+1σ'21<139δσn+12‖N-1‖=δσn+12σ'21≈040‖N-1‖‖δN‖=δσ'12σ'21≈0411-‖N-1‖‖δN‖-σ2n+1‖N-1‖-δσn+12‖N-1‖=1-δσ'12σ'21-σ2n+1σ'21-δσn+12σ'21≈σ'21-σ2n+1σ'21>042341-‖N-1‖‖δN‖-σ2n+1‖N-1‖-δσn+12‖N-1‖‖δ珛X‖≤‖N-1‖1-‖N-1‖‖δN‖-σ2n+1‖N-1‖-δσn+12‖N-1‖‖δL‖+‖δN‖‖X‖+δσn+12‖X‖4343‖X‖‖δ珛X‖‖X‖≤‖N-1‖1-‖N-1‖‖δN‖-σ2n+1‖N-1‖-δσn+12‖N-1‖‖δL‖‖X‖+‖δN‖+δσn+1()24427‖L‖≤‖N‖+σ2n+1‖X‖451‖X‖≤‖N‖+σ2n+1‖L‖464446‖δ珛X‖‖X‖≤‖N‖‖N-1‖1-‖N‖‖N-1‖‖δN‖+σ2n+1+δσn+12‖N‖‖δL‖‖L‖+‖δN‖‖N‖+1‖N‖‖L‖σ2n+1‖δL‖+δσn+12‖L‖4747AbTLS‖δL‖/‖L‖、‖δN‖/‖N‖34331/‖N‖‖L‖σ2n+1‖δL‖+δσn+12‖L‖condN‖N‖‖N-1‖‖δL‖/‖L‖‖δN‖/‖N‖TLS‖δL‖/‖L‖、‖δN‖/‖N‖1/‖N‖‖L‖σ2n+1‖δL‖‖+δσn+12‖‖L‖condN‖N‖‖N-1‖TLS。47LS1LS‖δN‖=0σ2n+1=0δσn+1=04782LSDLS‖δL‖=0σ2n+1=0δσn+1=047163LSσ2n+1=0δσn+1=04726。4、。、。1GolubGHandandVanLoanCF.AnanalysisofthetotalleastsquaresproblemJ.SIAMJNumerAnal.198017883-893.2VanHuffelSandVandewalleJ.ThetotalleastsquaresproblemComputationalaspectsandanalysisM.SIAMPhiladelphia1991.3VanHuffelSEd..Recentadvancesintotalleastsquarestechniquesanderrors-in-variablesmodelingM.SIAMPhiladelphia1997.4VanHuffelSandLemmerlingPEds..Totalleastsquaresanderrors-in-variablesmodelingAnalysisalgorithmsandapplicationsM.DordrechtKluwerAcademicPublishers2002.5.J.2012548-5257.WangLeyang.ResearchonpropertiesoftotalleastsquaresestimationJ.JouralofGes-desyandGeodynamics2012548-52576.J.A199493304-311WeiMushengandChenGuoliang.SolutionsetsandpropertyforweightedtotalleastsquaresproblemJ.AppliedMathemat-ics-AJournalofChineseUniversities199493304-311.7.TLSLSJ.2003254479-492LiuYonghuiandWeiMusheng.OnthecomparisionofthetotalleastsquaresandtheleastsquaresproblemsJ.MathematicaNumericaSinica2003254479-492.8ZhouLiangminetal.Perturbationanalysisandconditionnumb