第二单元:百分数(2)第一课时:百分数:折扣教学目标:1、明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。2、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。3、感受数学知识与生活的紧密联系,激发学习兴趣。教学重点:会解答有关折扣的实际问题。教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。教学过程:一、情景导入:圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?二、新课讲授1、理解“折扣”的含义。(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(课件出示)(3)引导提问:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?(5)学生动手操作、计算、讨论,找出规律:原价乘以70%恰好是标签的售价或现价除以原价大约都是70%。(6)归纳定义。通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。2、解决实际问题。(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?②先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价③学生独立根据数量关系式,列式解答。④全班交流。根据学生的汇报,板书:(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?②学生试算,独立列式。③全班交流。根据学生的汇报并板书。3、提高运用在某商店促销活动时,原价200元的商品打九折出售,最后剩下的个,商家再次打八折出售,最后的几商品售价多少元?引导学生分析,学生独立完成,再集体交流,让学生明确:“折上折”相当于连续求一个数的百分之几是多少。三、巩固练习1、完成教材第8页“做一做”练习题。2、完成教材第13页练习二第1~3题。四、课堂小结通过这节课的学习你有什么收获?五、板书设计百分数:折扣几折就是十分之几,也就是百分之几十(1)180×85%=153(元)(2)160-160×90%答:买这辆车用了153元。=160-144=16(元)160×(1-90%)=160×10%=16(元)答:比原价便宜了16钱。教学反思:第二课时百分数:成数教学目标:1、明确成数的含义。能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。2、通过成数的计算,进一步掌握解决百分数问题的方法。3、感受数学知识与生活的紧密联系,激发学习兴趣。教学重点:成数的理解和计算。教学难点:会解决生活中关于成数的实际问题。教学过程:一、情景导入(课件出示)农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……同学们有留意到类似的新闻报道吗?(学生汇报相关报导)二、新课讲授1、理解成数的含义。成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?(学生讨论并回答,教师随机板书)成数分数百分数二成十分之二20%(2)试说说以下成数表示什么?①出口汽车总量比去年增加三成。②北京出游人数比去年增加两成。引导学生讨论并回答。2、解决实际问题。(1)课件出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?(2)引导学生分析题目,理解题意:①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式:今年的用电量=去年的用电量×(1-25%)③学生独立根据关系式,列式解答。④全班交流。方法一:350×(1-25%)方法二:350-350×25%=350×75%=350-350×0.25=350×0.75=350-87.5=262.5(万千瓦时)=262.5(万千瓦时)三、练习巩固1、完成教材第9页“做一做”。2、完成练习二第4、5题。四、课堂小结这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?五、板书设计百分数:成数二成=(十分之二)=(20%)方法一:350×(1-25%)方法二:350-350×25%=350×75%=350-350×0.25=350×0.75=350-87.5=262.5(万千瓦时)=262.5(万千瓦时)教学反思:第三课时百分数:税率教学目标:1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。2、在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。3、感受数学知识与生活的紧密联系,激发学习兴趣。增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。教学重点:税率的理解和税额的计算。教学难点:税额的计算。教学过程:一、情景导入1、口答算式。(1)100的5%是多少?(2)50吨的10%是多少?(3)1000元的8%是多少?(4)50万元的20%是多少?2、什么是比率?二、新课讲授1、阅读教材第10页有关纳税的内容。说说:什么是纳税?2、税率的认识。(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。(2)试说说以下税率各表示什么意思。A、商店按营业额的5%缴纳个人所得税。B、某人彩票中奖后,按奖金的20%缴纳个人所得税。3、税款计算。(1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?(2)分析题目,理解题意。引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。(3)学生列出算式。相当于“求一个数的百分之几是多少”,用乘法计算。列式:30×5%(4)学生尝试计算。(5)汇报交流。30×5%=30×0.05=1.5(万元)三、巩固练习1、教材第10页“做一做”。2、完成教材第14页练习二第6题。3、完成教材第14页练习二第7题。4、完成教材第14页练习二第8题。5、完成教材第14页练习二第10题。四、课堂小结这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?五、板书设计百分数:税率应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%=1.5(万元)答:10月份应缴纳营业税约1.5万元。教学反思:第四课时:百分数:利率教学目标:1、通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。2、掌握计算利息的方法,会进行简单计算。3、对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。教学重点:掌握利息的计算方法。教学难点:正确地计算利息,解决利息计算的实际问题。教学过程:一、情景导入随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。板书课题:利率二、新课讲授1、介绍存款的种类、形式。存款分为活期、整存整取和零存整取等方式。2、阅读教材第11页的内容,理解本金、利息、税后利息和利率的含义。本金:存入银行的钱叫做本金。例题中王奶奶存入的5000元就是本金。利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。3、学会填写存款凭条。课件出示存款凭条,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)4、利息的计算。(1)出示利息的计算公式:利息=本金×利率×时间(2)计算连本带息的方法:连本带息取回的钱=本金+利息(3)学生阅读理解例4,计算后交流汇报,教师板书:5000+5000×3.75%×2=5000+375=5375(元)答:到期后可以取回5375元钱。三、巩固练习1、2012年8月,张爷爷把儿子寄来的8000元钱存入银行,存期5年,年利率为4.75%,到期支取时,张爷爷可得到多少利息?到期时张爷爷一共能取回多少钱?2、李阳的爸爸将一笔款存入银行整存整取三年,年利率是4.75%,到期时得到的利息是5700元,李阳的爸爸当初存入的是多少钱?3、乐乐把5000元压岁钱存入银行两年,年利率是3.75%,到期后,他准备把利息的80%捐给“希望工程”。乐乐捐给“希望工程”多少钱?四、课堂小结什么叫本金?什么叫利息?什么叫利率?如何计算利息?怎么计算取回的总钱数?五、板书设计百分数:利率利息=本金×利率×存期取回总钱数=本金+利息5000+5000×3.75%×2=5000+375=5375(元)答:到期后王奶奶可以取回5375元钱。教学反思:第五课时:百分数:整理与复习教学目标:1、熟练地掌握百分数应用题的数量关系,并能解决问题。2、通过归纳整理,是学生熟练地掌握解决百分数问题的方法。3、培养学生良好的学习习惯。教学重点:认真审题,用百分数解决实际问题。教学难点:用百分数解决实际问题。教学过程:一、复习整理前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。学生交流,汇报,教师随机板书,绘制表格。知识回顾知识点内容摘要解题关键折扣几折表示百分之几十原价×折扣数=现价1、找准单位“1”2、正确理解数量关系成数几成表示百分之几十税率应缴税额=各种收入×税率利率利息=本金×利率×存期取回总钱数=本金+利率二、综合运用课件出示例5。1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。2、利用提问,引导学生思考回答,归纳出解题思路。提问启发:“满100元减50元”是什么意思?引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。归纳整理解题思路:(1)在A商场买,直接用总价乘以50%就能算出实际花费。(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:A商场:230×50%=115(元)B商场:230-2×50=230-100=130(元)115130,答:在A商场买应付115元,在B商场,买应付130元;选择A商场更省钱。4、总结思考:在什么时候这两个商场价格差不多呢?三、巩固练习1、完成教材第12页“做一做”。学生独立完成,教师讲解。2、完成练习二第12题,再集体交流订正。3、完成练习二第13题。“折上折”是什么意思?这么计算呢?4、完成练习二第14题。5、完成练习二第15题。提示:增长为“-0.068%”表示什么意思?四、课堂小结通过这节课,你有什么收获,你将如何运用到生活中呢?五、板书设计百分数:整理与复习A商场:230×50%=115(元)B商场:230-2×50=230-100=130(元)115130答:在A商场买应付115元,在B商场,买应付130元;选择A商场更省钱。教学反思:知识回顾知识点内容摘要解题关键折扣几折表示百分之几十原价×折扣数=现价1、找准单位“1”2、正确理解数量关系成数几成表示百分之几十税率应缴税额=各种收入×税率利率利息=本金×利率×存期