一、解题思路讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。(1)追及(1)追及甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻(1)追及甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻(1)追及甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻判断v甲=v乙的时刻甲乙的位置情况:①若甲在乙前,则追上,并相遇两次;②若甲乙在同一处,则甲恰能追上乙;③若甲在乙后面,则甲追不上乙,此时是相距最近的时候。(1)追及甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻判断v甲=v乙的时刻甲乙的位置情况:①若甲在乙前,则追上,并相遇两次;②若甲乙在同一处,则甲恰能追上乙;③若甲在乙后面,则甲追不上乙,此时是相距最近的时候。甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻判断v甲=v乙的时刻甲乙的位置情况:①若甲在乙前,则追上,并相遇两次;②若甲乙在同一处,则甲恰能追上乙;③若甲在乙后面,则甲追不上乙,此时是相距最近的时候。情况同上,若涉及刹车问题,要先求停车时间,以作判别!(1)追及(2)相遇(2)相遇两相向运动的物体,当各自位移大小之和等于开始时两物体的距离,即相遇。也可以是两物体同向运动到达同一位置。讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。一、解题思路1.两个关系:时间关系和位移关系2.一个条件:两者速度相等一、解题思路讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。一、解题思路两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。1.两个关系:时间关系和位移关系2.一个条件:两者速度相等讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。二、例题分析【例1】一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?【例1】一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?x汽xx自二、例题分析[方法一]公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则:自汽vatvsavt2/自mattvxxxm6212自汽自x汽xx自[方法一]公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则:自汽vatvsavt2/自mattvxxxm6212自汽自x汽xx自那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?[方法一]公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则:自汽vatvsavt2/自mattvxxxm6212自汽自x汽xx自那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?221aTTv自[方法一]公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则:自汽vatvsavt2/自mattvxxxm6212自汽自x汽xx自那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?221aTTv自savT42自[方法一]公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则:自汽vatvsavt2/自mattvxxxm6212自汽自那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?221aTTv自savT42自m/s12aTv汽m24212=汽aTsx汽xx自[方法二]图象法解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其图线与时间轴围成的三角形的面积。两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三角形的面积之差最大。v/ms-106汽车自行车t/st0[方法二]图象法3tan/60tm6m6221mxv-t图像的斜率表示物体的加速度:当t=2s时两车的距离最大s20t动态分析随着时间的推移,矩形面积(自行车的位移)与三角形面积(汽车的位移)的差的变化规律。v/ms-106汽车自行车t/st0[方法三]二次函数极值法设经过时间t汽车和自行车之间的距离x,则:2223621ttattvx自时当s2)23(26tm6)23(462mxx汽xx自[方法三]二次函数极值法设经过时间t汽车和自行车之间的距离x,则:2223621ttattvx自时当s2)23(26tm6)23(462mxx汽xx自那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?[方法三]二次函数极值法设经过时间t汽车和自行车之间的距离x,则:2223621ttattvx自时当s2)23(26tm6)23(462mx那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?02362ttxsT4x汽xx自m/saTv12汽maTs24212=汽3.解题方法(1)画运动草图,找出两物体间的位移关系;(2)仔细审题,挖掘临界条件(va=vb),联立方程;(3)利用公式法、二次函数求极值、图像法知识求解。【例2】A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B正以v2=10m/s速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动。要使两车不相撞,a应满足什么条件?xAxxB两车恰不相撞的条件是两车速度相同时相遇。由A、B速度关系:由A、B位移关系:21vatv022121xtvattv2220221m/s5.0m/s1002)1020(2)(xvva2m/s5.0a则[方法一]公式法若两车恰好不相撞,其位移关系应为:022121xtvattv010010212tat∵不相撞∴△00100214100a2m/s5.0a则[方法二]二次函数极值法代入数据得:100)1020(210tst2005.0201020a2m/s5.0a则[方法三]图象法v/ms-1010t020ABt/s