0,(P)α、(S)βρ[1]。,。(AVO)(PP),PP。,PP2,[2-3];PP,。,,。,(PS),PSAVO[4-7]。PSS,S,,。PPPS,,。PPPS,PPPS。PSS,,。PPPS,,。PPPS。PPPS,PPPSAki-Richards。,。PPPS,PP。PPPS。;;;P631.4A1000-7857(2010)10-0106-05,(),102249ReviewofJointInversionofPPandPSWaves:2010-03-22:,,、,:Chuntao.zhang@hotmail.com;(),,、、,:wangsx@cup.edu.cnZHANGChuntao,WANGShangxuGeophysicsKeyLab,Information&ResourceFaculty,ChinaUniversityofPetroleum,Beijing102249,ChinaAbstractThejointinversionofPPandPSwavesarewidelystudiedinrecentyearswiththedevelopmentsofmulti-waveandmulti-componentseismicexplorations.AsakindofSwave,PSwavecannotpropagatethroughfluidsandthereforeismoresensitivetotheinternalstructureofrockfabrics.ThecombineduseofPPandPSwavedatamightprovidebettermeanstoidentifyelasticimpedanceandrockpropertyparametersfrommulti-waveseismicdataandtherebytoreducetheuncertaintyintheseismicinversion.TherecentresearchdevelopmentsinthejointinversionmethodsofPPandPSwavesarereviewedinthispaper.Firstly,abriefintroductionofthebasictheoryofthejointinversionmethodsisgiven.AlljointinversionmethodsarebasedontheAki-RichardsapproximatedlinearexpressionsofPPandPSwavereflectioncoefficients.Secondly,thealgorithmsandtheinvertedresultsofelasticparametersofthejointinversionmethodsarediscussed.ComparingtoinversionmethodsusingPPwaveonly,thealgorithmsofthejointinversionmethodsaremorestablebycombiningthetwoindependentPPandPSwaveseismicdata.Atlast,thefurtherdevelopmentofthejointinversionmethodsiscommented.Keywordsjointinversion;leasesquare;singularvaluedecomposition;weightedstacking(Reviews)1062010,28(10)1AVOZoeppritz。,PZoeppritz[8]-sinθ1-cos准1sinθ2-cos准2cosθ1-sin准1cosθ2sin准2sin2θ1α1β1cos2准1ρ2β22α1ρ1β21α2sin2θ2-ρ2β2α1ρ1β21cos2准2-cos2准1β1α1sin2准1ρ2α2ρ1α1cos2准2ρ2β2ρ1α1sin2准2ββββββββββββββββββββββββββββββββββββ·RPPRPSTPPTPSββββββββββββββββββββββββββ=sinθ1cosθ1sin2θ1cos2准1ββββββββββββββββββββββββββ(1),ρ1、α1、β1ρ2、α2、β2、、;θ1,θ2;准1、准2;RPP、TPP;RPS、TPS。(1),。,Zoeppritz,Aki-Richards[9]。Pθ、PSφ90°,Aki[9]Zoeppritz,-PPPSRPP(θ)≈12cos2θΔαα-4β2α2sin2θΔββ+121-4β2α2sin2≈≈θΔρρ(2)RPS(θ,φ)≈-αtanφ2β1-2β2α2sin2θ+2βαcosθcos≈≈φΔρρρ-4β2α2sin2θ-4βαcosθcos≈≈φΔβββ(3),△α=α2-α1,α=(α2+α1)/2,β、ρ。(2)、(3),PSRPSPPRPPS,PSRPS。PPPS2,。2AVOSmith[10],PP。Fatti[11],Gardner。Stewart[12],。,,[13-20]。PP(CMP)PS(CCP),(△α/α,△β/β)、(△I/I,△J/J)、(△(λρ)/λρ,△(λ/μ)/(λ/μ))。2.1Smth[10]PPAVO,。(2),RPP(θ)≈12Δαα+Δρρβ≈-2β2α22Δββ+Δρρβ≈sin2θ+12Δααtan2θ(4)Gardnerρ=aα1/4,Δρ/ρ=0.25Δα/α,(4)RPP(θ)≈58-12β2α2sin2θ+12Δααtan2β≈θΔαα-4β2α2sin2θΔββ(5)CMP,(5),R*PPiε=ni=1ΣAiΔαα+BiΔββ-R*PPiβ≈2(6),Ai=58-12β2α2sin2θi+12tan2θi,Bi=-4β2α2sin2θi;R*PPi,i=1,2,…,n,nCMP。εΔα/αΔβ/β,坠ε坠Δααβ≈=0坠ε坠Δβββ≈=0,ni=1Σ(A2i)ni=1Σ(AiBi)ni=1Σ(AiBi)ni=1Σ(B2i)ββββββββββββββββββββββββββββΔααΔββββββββββββββββββββββββ=ni=1Σ(AiR*PPi)ni=1Σ(BiR*PPi)ββββββββββββββββββββββββββββ(7)(7),Δαα=ni=1ΣR*PPiAinj=1Σ(B2j)-Binj=1Σ(AjBj)nj=1Σ(A2j)nj=1Σ(B2j)-nj=1Σ(AjBj)nj=1Σ(AjBj)ββββββββββββββββββββββββββΔββ=ni=1ΣR*PPiBinj=1Σ(A2j)-Ainj=1Σ(AjBj)nj=1Σ(A2j)nj=1Σ(B2j)-nj=1Σ(AjBj)nj=1Σ(AjBj)ββββββββββββββββββββββββββΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ(8)(8)。,α、α/β、CMP。(5),。1)(5)CMP,。,P,。(Reviews)2010,28(10)107。2)(5)β2/α2。Castagna[1]α≈1360+1.16β,P,CMPβ/α。Stewart[12]Smith,(2)(3),△α/α△β/β。,Gardner。Rpp(θ)≈181-4β2α2sin2θ+4cos2θββΔαα-4β2α2sin2θΔββ(9)RPS(θ)≈-αtanφ8β1-2β2α2sin2θ+2βαcosθcosββφΔαα+αtanφ2β4β2α2sin2θ-4βαcosθcosββφΔββ(10)R*PSi、R*PSi,ε=ni=1ΣR*PPi-AiΔαα-BiΔββββ2+R*PSi-CiΔαα-DiΔββββ2ΣΣ(11)坠ε/坠Δααββ=0,坠ε/坠Δββββ=0,(11),△α/α△β/β。,-α/β,、。Δα/αΔβ/βCMPCCP。Larsen[14]I=αρ,ΔI/I=Δα/α+Δρ/ρJ=βρ,ΔJ/J=Δβ/β+Δρ/ρ,(2)、(3),Gardner,RPP=(1+tan2θ)2ΔII-4β2α2sin2θΔJJ(12)RPS=-αtanφ10β1+2sin2φ-2βαcosθcosββφΔII+αtanφβ2sin2φ-2βαcosθcosββφΔJJ(13)PS(2)、(3)。Gidlow[21],(3)θ35°α/β1.5~2.0。,△I/I、△J/J[14]。2.2Gardner,,。,。PS,。Mahmoudian[19],,PP;3,;,△I/I△J/J,△ρ/ρ,;PP,,。Veire[22],,。MahmoudianAki-Richards,,RPP≈AΔII+BΔJJ+CΔρρ(14)RPS≈DΔρρ+EΔJJ(15)A=(1+tan2θ)2B=-4β2α2sin2θC=-12tan2θ-2β2α2sin2ΣΣθD=-αtanφ2β1+2sin2φ-2βαcosθcosββφE=αtanφ2β4sin2φ-4βαcosθcosββφ3。,,Aki-Richards32m。RPP1…RPPmRPS1…RPSmρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ2m×1=A1B1C1………AmBmCm0E1D1………0EmDmρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ2m×3ΔIIΔJJΔρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ3×1(16),y=(RPP1…RPPmRPS1…RPSm)T,(16)y=Ax。A2m×3,x=(ΔI/IΔJ/JΔρ/ρ)T。x。AH,x:x赞=Hy。SVDA。Veire[22],AkiRichard,,。LS=(1-w)ni=1Σ[R*PS(θP,i,θS,i)-RPS(θP,i,θS,i)]2+wmj=1Σ[R*PP(θP,j)-RPP(θP,j)]2(17),RPx,R*Px,。w,0≤w≤1,(Reviews)1082010,28(10)PPPS。PPPS,w0.5,w0.5。(17)△ρ/ρ,△α/α△β/β,0,B×ΔααΔββΔρρρρ=b(18)B3×3,θ、PS,bPPPS,。Bb[22]。,(SVD)。SVD,。,PSPP。,。α/β,α/β。,。2.3,△α/α、△β/β△I/I、△J/J,。Smith[10]△α/α、△β/β△I/I、△J/J△q/q△F。Δqq=Δαα-Δββ=ΔII-ΔJJ(19)ΔF=Δαα-KβαΔββ=ΔII-KβαΔJJ-Δρρ1-KβαJJ(20)Kαβ,Castagna[1],K=1.16。,△F0;,△F,。Goodway[23],λμ。λ、μ,。,;。,,。Goodway,:λ=α2ρ-2β2ρ,μ=β2λρ=I2-2J2,μρ=J2,Δ(λρ)λρ=2α2-2β2α2ΔII-2β2ΔJJJJ(21)Δ(λ/μ)λ/μ=2α2α2-2β2ΔII-ΔJJJJ(22)Δ(μρ)μρ=2ΔJJ(23)Aki·RichardsRPP(θ)≈(α2-β2)4α2cos2θρ≈Δ(λρ)λρ-β2α214cos2θ-2sin2JJθ·Δ(μρ)μρ-12tan2θ-2β2α2sin2ρ≈θΔρρ(24)RPS(θ,φ)≈-αtanφ2β1+2sin2φ-2βαcosθcosJJφΔρρρ-2sin2φ-2βαcosθcosJJφΔ(μρ)μρ≈(25)3P,。,;,;PP,,。。1)。Aki-Richards,。,Aki-RichardsRPSRPP,RPS[24-27]。2)。。,,;,。,。3)。,。,。,;[28]。4)。,。,PPPSPS。VSP-,PPPS。:①RPS,;②,;③,;④;⑤,。4,,(Re