八年级数学人教版_第十九章一次函数导学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第1课时变量学习目标:1、了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;学习过程:一、问题探究问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s:s=________,t的取值范围是_________.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y(元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y:y=______,x的取值范围是.这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为Lcm.1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L:L=____________,m的取值范围是.这个问题反映了_________随_________的变化过程.问题四:要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30cm2呢?怎样用含有圆面积S的式子表示圆半径r?1.请同学们根据题意填写下表:(用含的式子表示)面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.r=_________,s的取值范围是.这个问题反映了____随___的变化过程.问题五:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,2面积为Sm2.1.请同学们根据题意填写下表:长x(m)432.52x另一边长(m)面积s(m2)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示s.S=__________________,x的取值范围是.这个问题反映了矩形的____随___的变化过程.二、归纳总结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。结论:在一个变化过程中,我们称数值发生变化....的量为________;在一个变化过程中,我们称数值始终不变....的量为________;三、练一练1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+502.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量B.t是变量C.v是变量D.S是常量3.在一个变化过程中,_____________的量是变量,_____________的量是常量.4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份1234567100价钱/元x与y之间的关系是y=______,在这个变化过程中,常量___________,变量是___________.5.长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为:y=_______,则这个问题中,___________常量;_________是变量.6.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).3第2课时函数知识目标:1、理解函数的概念,能准确识别出函数关系中的自变量和函数2、会用变化的量描述事物导学过程一、忆一忆问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s:s=________,t的取值范围是_________.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y(元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y:y=______,x的取值范围是.这个问题反映了票房收入_________随售票张数_________的变化过程.二、想一想在上面两个问题中是否各有两个变量,同一个问题中的变量之间有什么联系?结论:三、探究一些用图或表格表达的问题中,也能看到两个变量之间有上面的关系。(1)下面是某人体检时的心电图,其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流(2)小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?周岁12345678910111213体重(kg)9.311.813.515.416.718.019.621.523.22527.630.232.54一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值四、练一练1、指出上面题目中的自变量、函数及函数值2、一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?像y=50-0.1x、y=10x这样,用关于自变量的式子表示函数与自变量之间关系,是描述函数的常用方法,这种式子叫做函数的解析式,函数有三种表示方法即表格、图像、解析式。五、综合训练:1、写出下列各问题中所满足的关系式,并指出各个关系式中变量、常量、函数、自变量,给定自变量一个值求此时函数值(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。2、教材74页练习六:反思5第3课时函数的图象学习目标1、理解函数图象的概念2、会列表、描点、连线,画出简单函数的图象导学过程一、学一学【自学指导】:请同学们阅读教材P75---P76思考以上内容,并思考一下问题:a)什么是函数图像?b)如何作函数图像?具体步骤有哪些?c)如何判定一个图像是函数图像,你判断的依据是什么?专项训练画出)0(6xxy的函数图象。小结:画函数图象的方法:二、读一读函数的三种表示方法为图像、表格、解析式,阅读教材79页---81页内容结合实例理解各种表示方法的特点。1.用解析法表示函数关系优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。缺点:在求对应值时,有时要做较复杂的计算。2.用列表表示函数关系优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。3.用图象法表示函数关系优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。缺点:从自变量的值常常难以找到对应的函数的准确值。三、练一练62、等腰△ABC的周长为10cm,底边BC的长为ycm,腰AB的长为xcm.(1)写出y关于x的函数关系式(2)求x的取值范围(3)画出函数的图象3画出函数y=21x2的图象.x。。。-3-2-10123。。。y。。。由此,我们得到一系列的有序实数对:。。。,(),(),(),(),(),(),(),。。。(2)在直角坐标系中描出这些有序实数对的对应点3、矩形的周长是8cm,设一边长为xcm,另一边长为ycm.(1)求y关于x的函数关系式,并写出自变量x的取值范围;(2)在给出的坐标系中,作出函数图像。(第1题)7t(分)s(米)4002510oy/千米X/分21.18055372515O第4课时函数图像学习目标:会观察函数图象,从函数图像中获取信息,解决问题。学习过程:一、做一做1、如图一,是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)气温最高是_______℃,在_______时,气温最低是_______℃,在______时;(2)12时的气温是_______℃,20时的气温是_______℃;(3)气温为-2℃的是在_______时;(4)气温不断下降的时间是在______________;(5)气温持续不变的时间是在______________。2、小明的爷爷吃过晚饭后,出门散步,再报亭看了一会儿报纸才回家,小明绘制了爷爷离家的路程s(米)与外出的时间t(分)之间的关系图(图二)(1)报亭离爷爷家________米;(2)爷爷在报亭看了________分钟报纸;(3)爷爷走去报亭的平均速度是________米∕分。3、图三反映的过程是:小明从家去菜地浇水,又去玉米地锄地,然后回家,。其中x表示时间,y表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。根据图像回答下列问题:(1)菜地离小明家多远?小明家到菜地用了多少时间?(2)小明给菜地浇水用了多少时间?(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(4)小明给玉米地除草用了多少时间?(5)玉米地离小明家多远?小明从玉米地回家的图三平均速度是多少?4、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是().8y/千米X/时O45301815141312111095、图中的折线表示一骑车人离家的距离y与时间x的关系。骑车人9:00离家,15:00回家,请你根据这个折线图回答下列问题:(1)这个人什么时间离家最远?这时他离家多远?(2)何时他开始第一次休息?休息多长时间?这时他离家多远?(3)11:00~12:30他骑了多少千米?(4)他再9:00~10:30和10:30~12~30的平均速度各是多少?(5)他返家时的平均速度是多少?(6)14:00时他离家多远?何时他距家10千米?6、王教授和孙子小强经常一起进行早锻炼,

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功