人船模型应用动量守恒处理问题制作讲解王永恺复习动量守恒定律的要点:1。矢量表达式:2。条件:m1v1+m2v2=m1v1/+m2v2/⑴系统不受合外力或系统所受合外力为零。⑵系统在某一方向合外力为零,则该方向动量守恒⑶系统内力远大于外力(如爆炸过程中的重力、碰撞过程中的摩擦力等)复习3、各物体的速度应取地为参考系4、系统在一维空间相互作用,应规定正方向,以确定每个动量的正、负。若待求量的方向未知,直接代入该量的符号,所求结果为正值,则该量的方向与规定方向相同,所求结果为负值,则该量的方向与规定方向相反。应用平均动量守恒处理问题的方法若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒。如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由0=m1v1-m2v2(其中v1、v2是平均速度)得推论:m1s1=m2s2,使用时应明确s1、s2必须是相对同一参照物体的大小。人船模型在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。若人匀速从船尾走到船头,不计水的阻力。则船将()(A)后退0.5m(B)后退0.6m(C)后退0.75m(D)一直匀速后退自定义主题B在此处添加您的选择信息在左侧添加文本、图形或照片在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。若人匀速从船尾走到船头,不计水的阻力。则船将()(A)后退0.5m(B)后退0.6m(C)后退0.75m(D)一直匀速后退分析与解:取人和小船为对象,它们所受合外力为零,初动量m人v人+m船v船=0(均静止)根据动量守恒定律m人v人+m船v船=m人v/人+m船v/船取人的走向为正方向0=m人v/人-m船v/船设走完时间为t则0=m人v/人t-m船v/船tm人S人=m船S船注意S1、s2均为相对地的位移60×(3-S船)=300×S船S船=0.5mAS人=L-S船S船人船模型的综合发散一、人船模型(水平方向)二、劈和物块(水平方向)三、气球和人(竖直方向)劈和物块一个质量为M,底面边长为b的劈静止在光滑的水平面上,见左图,有一质量为m的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少?S1S2bMm分析和解答:劈和小球组成的系统水平方向不受外力,故水平方向动量守恒,且初始时两物均静止,故由推论知ms1=Ms2,其中s1和s2是m和M对地的位移,由上图很容易看出:s1=b-s2代入上式得,m(b-s2)=Ms2,所以s2=mb/(M+m)即为M发生的位移。可见,处理此类题,除熟记推论外,关键是画草图,确定位移关系。气球和人载人气球原来静止在空中,与地面距离为h,已知人的质量为m,气球质量(不含人的质量)为M。若人要沿轻绳梯返回地面,则绳梯的长度至少为多长?解:取人和气球为对象,系统开始静止且同时开始运动,人下到地面时,人相对地的位移为h,设气球对地位移L,则根据推论有ML=mh得L=hmMLh地面因此绳的长度至少为L+h=(M+m)hM小结应用平均动量守恒解题的要点1、表达式0=m1v1-m2v2(其中v1、v2是平均速度)如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则2、推论:m1s1=m2s23、使用时应明确v1、v2、s1、s2必须是相对同一参照物体的大小