6-1-10牛吃草问题.题库教师版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

6-1-10.牛吃草.题库教师版page1of151.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量草场原有的草量新生的草量,其中草场原有的草量是一个固定值④新生的草量每天生长量天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度(对应牛的头数较多天数对应牛的头数较少天数)(较多天数较少天数);⑶原来的草量对应牛的头数吃的天数草的生长速度吃的天数;⑷吃的天数原来的草量(牛的头数草的生长速度);⑸牛的头数原来的草量吃的天数草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.板块一、一块地的“牛吃草问题”【例1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。“廿”即二十之意。)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【解析】设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162份;23头牛吃9周共吃了239207份.第二种吃法比第一种吃法多吃了20716245份草,这45份草是牧场的草963周生长出来的,所以每周生长的草量为45315,那么原有草量为:16261572.供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612(周)可将原有牧草吃例题精讲知识精讲教学目标牛吃草6-1-10.牛吃草.题库教师版page2of15完,即它可供21头牛吃12周.3个星期21头牛?个星期23头牛9个星期27头牛6个星期【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200份;15头牛吃10天共吃了1510150份.第一种吃法比第二种吃法多吃了20015050份草,这50份草是牧场的草201010天生长出来的,所以每天生长的草量为50105,那么原有草量为:200520100.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205(天)可将原有牧草吃完,即它可供25头牛吃5天.【巩固】仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。仓库里原有的存货若用1辆汽车运则需要多少天运完?【解析】设1辆汽车1天运货为“1”,进货速度为(9456)(96)2,原有存货为(42)918,仓库里原有的存货若用1辆汽车运则需要18118(天)【例2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【解析】设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15,原有草量为(2715)672,可供72181519(头)牛吃18周【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【解析】设1头牛1天的吃草量为“1”,那么251015天生长的草量为1225241060,所以每天生长的草量为60154;原有草量为:24410200.20天里,草场共提供草200420280,可以让2802014头牛吃20天.【巩固】(2007年湖北省“创新杯”)牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.【解析】设1头牛1天的吃草量为“1”,那么每天新生长的草量为103060702460243,牧场原有草量为10306016003,要吃96天,需要10160096203(头)牛.6-1-10.牛吃草.题库教师版page3of15【巩固】一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【解析】设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22,原有草量为:509229252,(252226)664(头)【巩固】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)【解析】设一只猴子一周吃的野果为“1”,则野果的生长速度是(2112239)(129)15,原有的野果为(2315)972,如果要4周吃光野果,则需有7241533只猴子一起吃【巩固】一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?【解析】水库原有的水与20天流入的水可供多少台抽水机抽1天?205100(台).水库原有的水与15天流入的水可供多少台抽水机抽1天?61590(台).每天流入的水可供多少台抽水机抽1天?(10090)(2015)2(台).原有的水可供多少台抽水机抽1天?10020260(台).若6天抽完,共需抽水机多少台?606212(台).【例3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【解析】设1头牛1天的吃草量为“1”,那么每天自然减少的草量为:2051566510,原有草量为:20105150;10天吃完需要牛的头数是:15010105(头).【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【解析】设1头牛1天吃的草为“1”。牧场上的草每天自然减少(254166)(64)2;原来牧场有草(252)4108,12天吃完需要牛的头数是:1081227(头)或(108122)127(头)。【例4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【解析】设1头牛1天的吃草量为“1”,651天自然减少的草量为2051664,原有草量为:2045120.若有11头牛来吃草,每天草减少11415;所以可供11头牛吃120158(天).【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【解析】设1头牛1天吃的草为“1”。牧场上的草每天自然减少(254166)(64)2原来牧场有草(252)41086-1-10.牛吃草.题库教师版page4of15可供10头牛吃的天数是:108(102)9(天)。【例5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【解析】设1头牛1天的吃草量为“1”,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天.那么每天生长的草量为16202012201210,原有草量为:161020120.10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要120158天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天.【巩固】(2008年希望杯六年级二试试题)有一片草场,草每天的生长速度相同。若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。那么,17头牛和20只羊多少天可将草吃完?【解析】“4只羊一天的吃草量相当于1头牛一天的吃草量”,所以可以设一只羊一天的食量为1,那么14头牛30天吃了144301680单位草量,而70只羊16天吃了16701120单位草量,所以草场在每天内增加了(16801120)(3016)40草量,原来的草量为11204016480草量,所以如果安排17头牛和20只羊,即每天食草88草量,经过480(8840)10天,可将草吃完。【巩固】一片牧草,每天生长的速度相同。现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?【解析】设1头牛1天的吃草量为“1”,60只羊的吃草量等于15头牛的吃草量,88只羊的吃草量等于22头牛的吃草量,所以草的生长速度为(15242012)(2412)10,原有草量为(2010)12120,12头牛与88只羊一起吃可以吃120(122210)5(天)【巩固】一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?【解析】设1头牛1天的吃草量为“1”,摘录条件,将它们转化为如下形式方便分析16头牛15天16×15=240:原有草量+15天生长的草量100只羊(25头牛)6天25×6=150:原有草量+6天生长的草量从上易发现:1天生长的草量=10;那么原有草量:150-10×6=90;8头牛与48只羊相当于20头牛的吃草量,其中10头牛去吃新生草,那么剩下的10头牛吃原有草,90只需9天,所以8头牛与48只羊一起吃,可以吃9天。【例6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【解析】设1头牛1天的吃草量为“1”,那么每天生长的草量为1730192430249,原有草量为:17930240.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完,如果不卖掉这4头牛,那么原有草量需增加428才能恰好供这些牛吃8天,所以这些牛的头数为6-1-10.牛吃草.题库教师版page5of1524088940(头).【巩固】一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【解析】设1头牛1天的吃草量为“1”,那么每天生长的草量为44053040301,原有草量为:5130120.如果4头牛吃30天,那么将会吃去30天的新生长草量以及90原有草量,此时原有草量还剩1209030,而牛的头数变

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功