(粤沪版)九年级物理(上册)知识点整理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共24页)第六节离散型随机变量的分布列、均值与方差考点一离散型随机变量的分布列1.(2013·广东,4)已知离散型随机变量X的分布列为X123P35310110则X的数学期望E(X)=()A.32B.2C.52D.3解析由已知条件可知E(X)=1×35+2×310+3×110=32,故选A.答案A2.(2015·安徽,17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).解(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A.P(A)=A12A13A25=310.(2)X的可能取值为200,300,400.P(X=200)=A22A25=110,P(X=300)=A33+C12C13A22A35=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=610.故X的分布列为X200300400第2页(共24页)P110310610E(X)=200×110+300×310+400×610=350.3.(2015·福建,16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为X123P161623所以E(X)=1×16+2×16+3×23=52.4.(2015·重庆,17)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.第3页(共24页)(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为X012P715715115故E(X)=0×715+1×715+2×115=35(个).5.(2014·天津,16)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.解(1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)=C13·C27+C03·C37C310=4960.所以,选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X的所有可能值为0,1,2,3.P(X=k)=Ck4·C3-k6C310(k=0,1,2,3).所以,随机变量X的分布列是X0123P1612310130随机变量X的数学期望E(X)=0×16+1×12+2×310+3×130=65.6.(2014·四川,17)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音第4页(共24页)乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解(1)X可能的取值为:10,20,100,-200.根据题意,有P(X=10)=C13×121×1-122=38,P(X=20)=C23×122×1-121=38,P(X=100)=C33×123×1-120=18,P(X=-200)=C03×120×1-123=18.所以X的分布列为X1020100-200P38381818(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=18.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)X的数学期望为E(X)=10×38+20×38+100×18-200×18=-54.这表明,获得分数X的均值为负,第5页(共24页)因此,多次游戏之后分数减少的可能性更大.7.(2014·山东,18)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为12,在D上的概率为13;对落点在B上的来球,小明回球的落点在C上的概率为15,在D上的概率为35.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.解(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=12,P(A1)=13,P(A0)=1-12-13=16;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=15,P(B1)=35,P(B0)=1-15-35=15.记D为事件“小明两次回球的落点中恰有一次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有一次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6,第6页(共24页)由事件的独立性和互斥性,得P(ξ=0)=P(A0B0)=16×15=130,P(ξ=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=13×15+16×35=16,P(ξ=2)=P(A1B1)=13×35=15,P(ξ=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=12×15+16×15=215,P(ξ=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=12×35+13×15=1130,P(ξ=6)=P(A3B3)=12×15=110.可得随机变量ξ的分布列为:ξ012346P13016152151130110所以数学期望E(ξ)=0×130+1×16+2×15+3×215+4×1130+6×110=9130.8.(2014·重庆,18)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数.)解(1)由古典概型中的概率计算公式知所求概率为p=C34+C33C39=584.(2)X的所有可能值为1,2,3,且P(X=1)=C24C15+C34C39=1742,P(X=2)=C13C14C12+C23C16+C33C39=4384,P(X=3)=C22C17C39=112,第7页(共24页)故X的分布列为X123P17424384112从而E(X)=1×1742+2×4384+3×112=4728.9.(2014·江西,21)随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b2-b1.(1)当n=3时,求ξ的分布列和数学期望;(2)令C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);(3)对(2)中的事件C,C表示C的对立事件,判断P(C)和P(C)的大小关系,并说明理由.解(1)当n=3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有C36=20种,所以ξ的分布列为ξ2345P1531031015E(ξ)=2×15+3×310+4×310+5×15=72.(2)ξ和η恰好相等的所有可能取值为:n-1,n,n+1,…,2n-2.又ξ和η恰好相等且等于n-1时,不同的分组方法有2种;ξ和η恰好相等且等于n时,不同的分组方法有2种;ξ和η恰好相等且等于n+k(k=1,2,…,n-2)(n≥3)时,不同的分组方法有2Ck2k种;所以当n=2时,P(C)=46=23,当n≥3时,P(C)=22122(2C)Cnkkknn.第8页(共24页)(3)由(2)知当n=2时,P(C)=13,因此P(C)P(C).而当n≥3时,P(C)P(C),理由如下:P(C)P(C)等价于2214(2Cnnnk.①1°当n=3时,①式左边=4(2+12C)=4(2+2)=16,①右边=C36C=20,所以①式成立.2°假设n=m(m≥3)时①式成立,22214(2C)CmKmKmk即成立那么,当n=m+1时,左边=12214(2Cmkkk21122(1)22(1)14(2C)4CC+4Cmkmmmkmmmk=(2m)!m!m!+4·(2m-2)!(m-1)!(m-1)!=(m+1)2(2m)(2m-2)!(4m-1)(m+1)!(m+1)!(m+1)2(2m)(2m-2)!(4m)(m+1)!(m+1)!=Cm+12(m+1)·2(m+1)m(2m+1)(2m-1)Cm+12(m+1)=右边.即当n=m+1时①式也成立.综合1°,2°得:对于n≥3的所有正整数,都有P(C)P(C)成立.10.(2013·天津,16)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).第9页(共24页)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.解(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=C12C35+

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功