定量分析中的误差

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、误差与准确度二、偏差与精密度三、准确度与精密度的关系§1.2定量分析中的误差一、误差与准确度概念准备:真值(T或xt)——某一物理量本身具有的客观存在的真实数值。平均值()——n次测量数据的算术平均值xniinxnnxxxx1211一、误差与准确度1.误差(E)——指分析结果(x)与真值(xt)的差值.2.准确度——指分析结果(x)与真值(xt)的接近程度,用误差表示.误差(E)=测量值(x)-真值(xt)一、误差与准确度正误差:E0;负误差:E0误差绝对值越小,准确度越高,误差绝对值越大,准确越低.判断以下说法是否正确1、误差愈小,测定结果的准确度愈高。()2、误差的值一定大于零。()3、误差的值一定小于零。()一、误差与准确度样品测定值(kg)真值(kg)误差A50.150.0B2.12.0练习:求下列数据的误差,并判断哪个准确度高?+0.1+0.13.误差的分类(1)绝对误差:(2)相对误差+0.2%+5.0%相对误差绝对误差Ea=测量值(x)-真值(xt)%100%100txEaEr真值绝对误差一、误差与准确度样品测定值(kg)真值(kg)误差A50.150.0B2.12.0练习:求下列数据的误差,并判断哪个准确度高?+0.1+0.13.误差的分类(1)绝对误差:(2)相对误差+0.2%+5.0%相对误差绝对误差Ea=测量值(x)-真值(xt)%100%100txEaEr真值绝对误差用相对误差来表示各种情况下测定结果的准确度更为准确样品测定值(g)真值(g)样品A2.17502.1751样品B0.21750.2176例1-1解:A样品:=2.1750–2.1751=-0.0001g=-0.0001/2.1751=-0.005%B样品:=0.2175–0.2176=-0.0001g实际工作中,样品的真值是无法确定的,在计算过程中一般采用多次测定的平均值近似为真值.=-0.0001/0.2176=-0.05%%100txEaEr%100txEaErtaxxEtaxxE二、偏差与精密度x思考题:甲乙两位同学对同一样品进行了五次重复测定,测定结果分别如下:甲:0.3,0.2,0.3,0.3,0.4,乙:0.1,0.6,0.2,0.1,0.5,x=0.3=0.3(1)甲同学测定的几个结果中哪个结果更好?乙同学的呢?(2)两位同学的测定水平哪个更好?如何评价?1.精密度:指一组平行测定数据相互接近的程度,用偏差(d)表示.反映了测定值的重复性和再现性.二、偏差与精密度偏差越小,表示测定结果间越接近,精密度越高二、偏差与精密度2.精密度的分类:绝对偏差和相对偏差平均偏差和相对平均偏差标准偏差和变异系数dxx(1)绝对偏差(d)(2)平均偏差和相对平均偏差%100%ddx平均偏差niindnndddd1211相对平均偏差在一般分析工作中,常用平均偏差和相对平均偏差来衡量一组测定值的精密度甲乙两位同学对同一样品重复进行测定10次,结果如下:甲2.31.81.62.22.12.42.01.72.21.7乙2.02.11.32.21.91.82.51.82.32.1分别求出甲乙两组数据的平均数、平均偏差、相对平均偏差d1=+0.3,d2=-0.2,d3=-0.4,d4=+0.2,d5=+0.1,d6=+0.4,d7=+0.0,d8=-0.3,d9=+0.2,d10=-0.32107.12.27.10.24.21.22.26.18.13.2nxxixxdii平均数偏差24.0103.02.03.00.04.01.02.04.02.03.010110211ddddndnii%12%100224.0xd相对平均偏差平均偏差平均数平均偏差相对平均偏差标准偏差甲20.2412%乙20.2412%甲2.31.81.62.22.12.42.01.72.21.7乙2.02.11.32.21.91.82.51.82.32.1(3)标准偏差和变异系数样本标准偏差变异系数(相对标准偏差)112ndsnii%100xsCV样本标准偏差能更好的反映两组数据的精密度的好坏平均数平均偏差相对平均偏差标准平均偏差甲20.2412%乙20.2412%甲2.31.81.62.22.12.42.01.72.21.7乙2.02.11.32.21.91.82.51.82.32.10.28概念表示分类及表示公式准确度误差绝对误差相对误差精密度偏差偏差平均偏差相对平均偏差标准偏差变异系数Ea=x-xtdxx100xxdx%%%100%ddxniidnd11112ndsnii%100xsCV例:求下列数据的偏差、平均偏差、相对平均偏差、样本标准偏差、变异系数0.20.30.20.1解:平均数偏差2.041.02.03.02.0nxxiid02.02.011xxd1.02.01.002.02.01.02.03.0432dddxxdii相对平均偏差:样本标准偏差变异系数05.041.001.004143211dddddndnii平均偏差%25%1002.005.0%100xd相对平均偏差082.0112nsniid%41%100)(xsCV变异系数名称准确度精密度定义是指分析结果与真实值相接近的程度是指在相同条件下,平行测定数据的相互接近程度。表示方法误差表示偏差表示使用范围真实值知道真实值不知道同学们熟悉的经历:军训打靶甲乙丙结果:精密度好,准确度不好。精密度好准确度也好精密度不好,准确度也不好。评价:技术好,枪不好。若将枪调整好了,可以打好。枪好,技术好,首先技术要好。枪可能不好,但首要解决技术问题。三、准确度与精密度的关系准确度低精密度高准确度高精密度高准确度低精密度低例:A、B、C、D四个分析工作者对同一铁标样(WFe=37.40%)中的铁含量进行测量,得结果如图示,比较其准确度与精密度。36.0036.5037.0037.5038.00测量点平均值真值DCBAD:表观准确度高,精密度低C:准确度高,精密度高B:准确度低,精密度高A:准确度低,精密度低(不可靠)(三)准确度和精密度的关系1、精密度高,准确度一定高。()2、精密度高,准确度一定低()3、精密度的高低不会影响准确度()4、要有高的准确度,必须要有高的精密度()精密度是保证准确度的先决条件.精密度差,所测结果不可靠,就失去了衡量准确度的前提,高的精密度,不一定能保证高的准确度.(三)准确度和精密度的关系准确度与精密度的关系•结论:1、精密度是保证准确度的前提。2、精密度高,不一定准确度就高。作业:P14第4题

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功