第二节不定积分的计算一、第一类换元法二分部积分法三总结换元积分法xdx2cos,2sin21Cx解决方法利用复合函数,设置中间变量.过程令2ux2,dudxxdx2cos1cos2udu1sin2uCCx2sin21一、第一类换元法换元换回原变量求导数验证结果问题dxxxf)()]([CxFduufxu)]([])([)(第一类换元公式(凑微分法)说明:使用此公式的目的在于化难为易CxFCuFduufdxxxfxu)]([)()()()]([)(定理1换元公式可导,则有,具有原函数设)()()(xuuFuf例1求.2sinxdx解(一)xdx2sin)2(2sin21xxd;2cos21Cx解(二)xdx2sinxdxxcossin2)(sinsin2xxd;sin2Cx解(三)xdx2sinxdxxcossin2)(coscos2xxd.cos2Cx例2求.231dxx解,)23(23121231xxxdxx231dxxx)23(23121duu121C|u|ln21.|23|ln21Cxbaxuduufadxbaxf)(1)(一般地例3求.)ln21(1dxxx解dxxx)ln21(1)(lnln211xdx)ln21(ln21121xdxxuln21duu121Cu||ln21.|ln21|ln21Cx一般地xuduufdxxxfln)(1)(ln例4求.)1(3dxxx解dxxx3)1(dxxx3)1(11)1(])1(1)1(1[32xdxxCxx2)1(2111例5求.122dxxa解dxxa221dxaxa222111axdaxa2111.1Caxarctga例6求.25812dxxx解dxxx25812dxx9)4(12dxx13413122341341312xdx.34arctan31Cx例7求.11dxex解dxex11dxeeexxx11dxeexx11dxeedxxx1)1(11xxededx.)1ln(Cexx例9:求22axdx解:原式dxaxaxa)11(21])()([21axaxdaxaxdacaxaxa|]|ln||[ln21caxaxa||ln21例12求解.cos11dxxdxxcos11dxxxxcos1cos1cos1dxxx2cos1cos1dxxx2sincos1)(sinsin1sin122xdxdxx.sin1cotCxx例13求解.cossin52xdxxxdxx52cossin)(sincossin42xxdx)(sin)sin1(sin222xdxx)(sin)sinsin2(sin642xdxxx.sin71sin52sin31753Cxxx说明当被积函数是三角函数相乘时,可考虑拆开奇次项去凑微分.例14求解.2cos3cosxdxx)],cos()[cos(21coscosBABABA),5cos(cos212cos3cosxxxxdxxxxdxx)5cos(cos212cos3cos.5sin101sin21Cxx例15求解法一dxxsin1.cscxdxxdxcscdxxx2cos2sin2122cos2tan12xdxx2tan2tan1xdxCx|2tan|ln.|cotcsc|lnCxxctgxxxxxxxxxxxcscsincos12sin2cos22sin2sin22cos2sin2tan:注.)tanln(secsecCxxxdx类似地可推出解法二dxxsin1xdxcscdxxx2sinsin)(coscos112xdxxucosduu211duuu111121Cuu|1||1|ln21.cos1cos1ln21Cxx思考:以下几种形式的积分,如何用凑微分法求积dxcbxax21cbxaxxdx2xdx3sinbxdxaxcossindxxbxa2222sincos1dxxa221dxax221dxax221dxcbxaxBAx2CarchxdxxCxdxx11;arcsin1122例16求解.2arcsin412dxxxdxxx2arcsin41222arcsin2112xdxx)2(arcsin2arcsin1xdx.|2arcsin|lnCx问题?dxxex解决思路利用两个函数乘积的求导法则.设函数)(xuu和)(xvv具有连续导数,,vuvuuv,vuuvvu,dxvuuvdxvu.duvuvudv分部积分公式一、基本内容?cosxdxx?cosdxxex?arcsinxdx?)1ln(2dxxx二分部积分法例1求积分.cosxdxx解(一)令,cosxudvdxxdx221xdxxcosxdxxxxsin2cos222显然,选择不当,积分更难进行.vu,解(二)令,xudvxdxdxsincosxdxxcosxxdsinxdxxxsinsin.cossinCxxx例2求积分.2dxexx解,2xu,dvdedxexxdxexx2dxxeexxx22.)(22Cexeexxxx(再次使用分部积分法),xudvdxex总结若被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就考虑设幂函数为,使其降幂一次(假定幂指数是正整数)u例3求积分.arctanxdxx解令,arctanxudvxdxdx22xdxxarctan)(arctan2arctan222xdxxxdxxxxx222112arctan2dxxxx)111(21arctan222.)arctan(21arctan22Cxxxx例4求积分.1arctan2dxxxx解,1122xxxdxxxx21arctan21arctanxxd)(arctan1arctan122xdxxxdxxxxx222111arctan1dxxxx2211arctan1令txtandxx211tdtt22sectan11tdtsecCtt)tanln(secCxx)1ln(2dxxxx21arctanxxarctan12.)1ln(2Cxx例5求积分.ln3xdxx解,lnxu,443dvxddxxxdxxln3dxxxx3441ln41.161ln4144Cxxx总结若被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就考虑设对数函数或反三角函数为.u例6求积分.)sin(lndxx解dxx)sin(ln)][sin(ln)sin(lnxxdxxdxxxxxx1)cos(ln)sin(ln)][cos(ln)cos(ln)sin(lnxxdxxxxdxxxxx)sin(ln)]cos(ln)[sin(lndxx)sin(ln.)]cos(ln)[sin(ln2Cxxx例7求积分.sinxdxex解xdxexsinxxdesin)(sinsinxdexexxxdxexexxcossinxxxdexecossin)coscos(sinxdexexexxxxdxexxexxsin)cos(sinxdxexsin.)cos(sin2Cxxex注意循环形式例8已知)(xf的一个原函数是2xe,求dxxfx)(.解dxxfx)()(xxdf,)()(dxxfxxf,)(2Cedxxfxdxxfx)(dxxfxxf)()(222xex.2Cex例9求nnaxdxI)(22,其中n为正整数.解即时有当用分部积分法,])()(1[)1(2)()()1(2)()(1,222122122222122122dxaxaaxnaxxdxaxxnaxxaxdxnnnnnnn.arctan1,],)32()([)1(21),)(1(2)(111222211221nnnnnnnnICaxaIInaxxnaIIaInaxxI即得并由以此递推于是例10求dxex.解CxeCtedtetetdedttedxetdtdxtxtxxtttttx)1(2)1(22222,2,,2于是则令三总结一、换元法与隐函数求导,一元函数的微分不变性相关二分部积分与乘积的求导法则相关三不是每个函数的积分都可以写成初等函数