ch-8 One Dimensional Gas Flow

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

CH8气体的一维流动OneDimensionalGasFlowIfthedensitychangeissignificant,itfollowsfromtheequationofstatethatthetemperatureandpressurechangearealsosubstantial.Largetemperaturechangeimplythattheenergyequationcannolongerbeneglected.Thereforetheworkisdoubledfromtwobasicequationtofour:VelocityofSound1.音速声音的传播是一种小扰动波连续性方程动量方程略去高阶微量,得cAdtdcdvAdtcddvpdpApAcAdvdpcd——音速定义式液体:dpEEcd气体:视作等熵过程kpC微分:ppdpdpcRT解得dpcdv得sddpc小扰动音速,等熵过程,pcpc1sppcRT当地音速gcRT2.音速Velocityofsound讨论:(1)音速与本身性质有关(2)1cddpdpd/越大,越易压缩,c越小音速是反映流体压缩性大小的物理参数(3),,cfTfpVT当地音速(4)空气1.4287cTKT288340/cms马赫数MachnumberMa=v/cMa1,subsonic亚声速流;Ma=1,sonic声速流;Ma1,supersonic超音速,RTvMa22vMc微小扰动在空气中的传播Ma1时,亚声速流;Ma=1时,声速流;Ma1时,超声速流,时称高超声速流.102Ma与介质的压缩特性有关,越不易压缩的介质(越刚)(大弹性模量)音速越大。smcKkgJRKCT/17.340,/287,4.1,288150固体中的音速最大液体中的音速中等气体中的音速最小气液固EEEccc固液气马赫锥马赫角α:Mva1sin§2Isentropicflowwithareachange1*流速与面积的关系Relationbetweenvelocityandarea:Continuity:X–momentum:AdATdTdpdpvdvf,,,constVA12zVzyVyxVxxpxxxxVVVf11dVdpdxdxv1dpvdvFromeg(2),wehave:22dpddvvddvdvcv2ddvvMadTddp,,,dV02AdAVdVVdVMconstVAlnlnVlnAconst0ddVdAVAVdVdM2vdvMavdvvdvMaAdA)1(2221dAdv(Ma)Av图8-8Ma1,subsonicdv0,dp0,dρ0dT0Ma1supersonicdv0,dp0dρ0dT0图8-9dv0,dp0,dρ0dT0dv0dp0dρ0dT0VdVadM2VdVdaVdVdaMM,1,1dVVAdA,0,0BasicEquationofIsentropicGasFlowvecTRTppvvpecTRTcRTcThvpccR222111ppVvvcvpvvecThconstRTpvvvvpcccRcpRTRTTcvppp11V=0stagnationpropertiesstagnationvalues:0p00T0c0h0020002211010001112pvvvcvvpppvvvcvvppVRThTcuRThTcu1按照一定的过程将气流速度滞止到零,这时的压强,密度和温度等称为滞止参数.这种状态就是滞止状态.0221hvh0221TvcT对于比热为常数的完全气体,上式为•一滞止状态二极限状态定义:极限状态就是指,绝能流随着气体的膨胀,加速,分子无规则运动的动能全部转化成宏观运动的动能,气流的静温和静压均降低到零,气流速度达到极限速度.00max212TcTRvp气流的特定状态和参考速度滞止状态临界状态最大速度状态0ucu0,maxTuu1M1M2.滞止参数(驻点参数)设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数v0=0——滞止点(驻点)00000,,,,haTp002121pkkvpkk02121RTkkvRTkk1212022kavka022hvh性质:(1)在等熵流动中,滞止参数值不变;(2)在等熵流动中,速度增大,参数值降低;(3)气流中最大音速是滞止音速;(4)在有摩擦的绝热过程中,机械能转化为内能,总能量不变——T0,a0,h0不变,p0↓,ρ0↓,但p0/ρ0=RT0不变。如有能量交换,吸收能量T0↑,放出能量T0↓00ckRT

1 / 39
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功