材料的形貌检测分析技术人的眼睛的分辨本领0.1毫米光学显微镜:极限分辨本领是0.2微米。透射电子显微镜:分辨本领优于3Å扫描电子显微镜:分辨本领是3-4nm扫描隧道显微镜:0.1nm和0.01nm原子力显微镜TEM&SEM电子与物质相互作用当高能入射电子束轰击样品表面时,入射电子束与样品间存在相互作用,有99%以上的入射电子能量转变成样品热能,而余下的约1%的入射电子能量,将从样品中激发出各种有用的信息,主要有:1)二次电子—从距样品表面l00Å左右深度范围内激发出来的低能电子。50eV---SEM2)背散射电子—从距样品表面0.1—1μm深度范围内散射回来的入射电子,其能量近似入射电子能量。SEM、低能电子衍射3)透射电子—如果样品足够薄(1μm以下)。透过样品的入射电子为透射电子,其能量近似于入射电子能量。TEM4)吸收电子—残存在样品个的入射电子。吸收电子像:表面化学成份和表面形貌信息。5)俄歇电子—从距样品表面几Å深度范围内发射的并具有特征能量的二次电子。6)非弹性散射电子—入射电子受到原子核的吸引改变方向电子。能量损失谱。1932—1933年间,德国的Ruska和Knoll等在柏林制成了第一台电子显微镜。放大率只有l2倍。表明电子波可以用于显微镜。1986诺贝尔奖。1939年德国的西门子公司产生了分辨本领优于100Å的电子显微镜。我国从1958年开始制造电子显微镜。现代高性能的透射电子显微镜点分辨本领优于3Å,晶格分辨本领达到1-2Å,自动化程度相当高。TEM:4.TEM法测纳米样品的优缺点优点:分辨率高,1-3Å,放大倍数可达几百万倍,亮度高,可靠性和直观性强,是颗粒度测定的绝对方法。缺点:缺乏统计性。立体感差,制样难,不能观察活体,可观察范围小,从几个微米到几个埃。[1]取样时样品少,可能不具代表性。[2]铜网捞取的样品少。[3]观察范围小,铜网几平方毫米就是1012平方纳米。[4]粒子团聚严重时,观察不到粒子真实尺寸。****SEM:1935年:德国的Knoll提出了扫描电镜(SEM)的概念;1942:Zworykin.Hillier,制成了第一台实验室用的扫描电镜。1965年第一台商品扫描电镜问世。SecondaryElectrons(SE)IncidentElectronSecondaryElectron二次电子——从距样品表面l00Å左右深度范围内激发出来的低能电子。50eV,与原子序数没有明显关系,对表面几何形状敏感。BackscatteredElectrons(BE)IncidentElectronBackscatteredElectron背散射电子——从距样品表面0.1—1μm深度范围内散射回来的入射电子,其能量近似入射电子能量。backscatteredelectronZnO微米晶体生长习性氢氧化锌薄膜高分子纳米管螺旋形碳纳米管阳极氧化铝模板填充玻纤的高分子断面3.SEM分析样品的优缺点优点:1)仪器分辨本领较高,通过二次电子像能够观察试样表面60Å左右的细节。2)放大倍数变化范围大(一般为l0—150000倍),且能近续可调。3)观察试样的景深大,图像富有立体感。可用于观察粗糙表面,如金属断口、催化剂等。4)样品制备简单。缺点:不导电的样品需喷金(Pt、Au)处理,价格高,分辨率比TEM低,现为3-4nm。光学显微镜、扫描电镜及透射电镜性能比较1933年电子显微镜RuskaKnoll透射电子显微镜扫描电子显微镜场电子显微镜场离子显微镜低能电子衍射光电子能谱电子探针表面结构分析仪器的局限性低能电子衍射和X射线衍射光学显微镜和扫描电子显微镜高分辨透射电子显微镜场电子显微镜和场离子显微镜X射线光电子能谱样品具有周期性结构不足分辨出表面原子用于薄层样品的体相和界面研究只能探测在半径小于100nm的针尖上的原子结构和二维几何性质,且制样技术复杂只能提供空间平均的电子结构信息纳米科技突飞猛进的发展Dendrimer-likeGoldNanoparticle[3]ε-Conanocrystalscoatedbyamonolayerofpoly(acrylicacid)-block-polystyrene[2]DNATranslocationinInorganicNanotubes[4]Diameter-DependentGrowthDirectionofEpitaxialSiliconNanowires[5]第四章扫描探针显微技术及其应用SeminarI主要内容扫描探针显微镜的产生扫描探针显微镜的原理与特点扫描探针显微镜的应用存在的问题及其展望扫描探针显微镜的产生扫描隧道显微镜1982年人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广阔的应用前景被国际科学界公认为八十年代世界十大科技成就之一。STM问世之前,微观世界还只能用一些烦琐的、往往是破坏性的方法来进行观测。而STM则是对样品表面进行无损探测,避免了使样品发生变化,也无需使样品受破坏性的高能辐射作用。任何借助透镜来对光或其它辐射进行聚焦的显微镜都不可避免的受到一条根本限制:光的衍射现象。由于光的衍射,尺寸小于光波长一半的细节在显微镜下将变得模糊。而扫描隧道显微镜(STM)则能够轻而易举地克服这种限制,因而可获得原子级的高分辨率扫描探针显微镜的产生扫描探针显微镜(SPM)扫描力显微镜(SFM)扫描近场光学显微境(SNOM)弹道电子发射显微镜(BEEM)原子力显微镜(AFM)扫描隧道显微镜(STM)扫描探针显微镜的原理当探针与样品表面间距小到纳米级时,按照近代量子力学的观点,由于探针尖端的原子和样品表面的原子具有特殊的作用力,并且该作用力随着距离的变化非常显著。当探针在样品表面来回扫描的过程中,顺着样品表面的形状而上下移动。独特的反馈系统始终保持探针的力和高度恒定,一束激光从悬臂梁上反射到感知器,这样就能实时给出高度的偏移值。样品表面就能记录下来,最终构建出三维的表面图[6]。扫描探针显微镜的特点1.分辨率高横向分辨率可达0.1nm纵向分辨率可达0.01nm2、可实时地得到表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究。应用:可用于表面扩散等动态过程的研究。扫描探针显微镜的特点3、可以观察单个原子层的局部表面结构,而不是体相或整个表面的平均性质。应用:可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。4、可在真空、大气、常温等不同环境下工作,甚至可将样品浸在水和其它溶液中,不需要特别的制样技术,并且探测过程对样品无损伤。应用:适用于研究生物样品和在不同试验条件下对样品表面的评价,例如对于多相催化机理、超导机制、电化学反应过程中电极表面变化的监测等。扫描探针显微镜的特点5、配合扫描隧道谱,可以得到有关表面结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。6、在技术本身,SPM具有的设备相对简单、体积小、价格便宜、对安装环境要求较低、对样品无特殊要求、制样容易、检测快捷、操作简便等特点,同时SPM的日常维护和运行费用也十分低廉。扫描探针显微镜的特点分辨率工作环境样品环境温度对样品破坏程度检测深度扫描探针显微镜原子级(0.1nm)实环境、大气、溶液、真空室温或低温无100μm量级透射电镜点分辨(0.3~0.5nm)晶格分辨(0.1~0.2nm)高真空室温小接近SEM,但实际上为样品厚度所限,一般小于100nm.扫描电镜6~10nm高真空室温小10mm(10倍时)1μm(10000倍时)相较于其它显微镜技术的各项性能指标比较扫描探针显微镜正在迅速地被应用于科学研究的许多领域,如纳米技术,催化新材料,生命科学,半导体科学等,并且取得了许多重大的科研成果.扫描探针显微镜的应用18018224126731920002001200220032004扫描探针显微镜的应用近年来CA上关于SPM的论文扫描探针显微镜的应用&呈现原子或分子的表面特性&用于研究物质的动力学过程&检测材料的性能&操纵和移动单个原子或分子扫描探针显微镜的其它应用微米纳米结构表征,粗糙度,摩擦力,高度分布,自相关评估,软性材料的弹性和硬度测试高分辨定量结构分析以及掺杂浓度的分布等各种材料特性失效分析:缺陷识别,电性测量(甚至可穿过钝化层)和键合电极的摩擦特性生物应用:液体中完整活细胞成象,细胞膜孔隙率和结构表征,生物纤维测量,DNA成像和局部弹性测量硬盘检查:表面检查和缺陷鉴定,磁畴成象,摩擦力和磨损方式,读写头表薄膜表征:孔隙率分析,覆盖率,附着力,磨损特性,纳米颗粒和岛屿的分布存在的问题及其展望借助其它技术手段在,难以绝对定量物质的性质考察物质性质时,SPM空间分辨率较低获取数据速率较慢难以快速的控制原子,分子的结构4.1扫描隧道显微镜(STM)一.引言二.STM工作原理三.基本结构四.SEM像五.STM的特点六.影响图像质量的因素七.STM基础上发展起来的各种新型显微镜量子隧道效应经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。例如骑自行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。如果坡很高,不蹬自行车,车到一半就停住,然后退回去。量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantumtunneling)。隧道效应是微观粒子(如电子、质子和中子)波动性的一种表现。一般情况下,只有当势垒宽度与微观粒子的德布罗意波长可比拟时,才可以观测到显著的隧道效应。隧穿过程遵从能量守恒和动量〔或准动量〕守恒定律。1958年江崎宣布发明了隧道二极管;1960年加埃沃实验证明单电子隧道效应;1962年约瑟夫森(22岁)提出双电子隧道效应。1973年,江崎、加埃沃、约瑟夫森获诺贝尔物理奖。1972年,Young检测金属探针和表面之间的电子场发射流来探测物体表面:针尖与样品间距20nm,横向分辨率400nm。1981年,美国IBM司G.Binning和H.Rohrer博士发明了扫描隧道显微镜,针尖与样品间距1nm,横向分辨率0.4nm;1986年获诺贝尔物理奖。。这是目前为止能进行表面分析的最精密仪器,既可观察到原子,又可直接搬动原子。横向分辨率可达到0.1nm,纵向分辨率可达到0.01nm。世界上第一台扫描隧道显微镜(STM)G.BinningH.Rohrer二.STM工作原理1.隧道电流的产生在样品与探针之间加上小的探测电压,调节样品与探针间距控制系统,使针尖靠近样品表面,当针尖原子与样品表面原子距离≤10Å时,由于隧道效应,探针和样品表面之间产生电子隧穿,在样品的表面针尖之间有一纳安级电流通过。电流强度对探针和样品表面间的距离非常敏感,距离变化1Å,电流就变化一个数量级左右。探针与样品之间的缝隙就相当于一个势垒,电子的隧道效应使其可以穿过这个缝隙,形成电流,并且电流对探针与样品之间的距离十分敏感,因此通过电流强度就可以知道到探针与样品之间的距离2.扫描方式移动探针或样品,使探针在样品上扫描。根据样品表面光滑程度不同,采取两种方式扫描:恒流扫描,恒高扫描A:恒流扫描:即保持隧道电流不变,调节探针的高度,使其随样品表面的高低起伏而上下移动。样品表面粗糙时,通常采用恒流扫描。移动探针时,若间距变大,势垒增加,电流变小,这时,反馈系统控制间距电压,压电三角架变形使间距变小,相反…..,保持隧道电流始终等于定值。记录压电三角架在z方向的变形得到样品表面形貌。B:恒高扫描:当样品表面很光滑时,可采取这种方式,即保持探针高度不变,平移探针进行扫描。直接得到隧道电流随样品表面起伏的变化。特点:成像速度快。隧道针尖1