光合速率测定方法总结光合作用第一轮复习四川省南部中学马彦平概念光合速率指单位时间、单位叶面积的CO2吸收量或者是O2的释放量;也可以用单位时间、单位叶面积干物质的积累量来表示。真正光合速率(总光合速率)=表观光合速率(净光合速率)+呼吸速率一、干物质量的积累“半叶法”---测光合作用有机物的生产量,即单位时间、单位叶面积干物质积累数例1某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。其原理是:将对称叶片的一部分(A)遮光,另一部分(B)不做处理,并采用适当的方法阻止两部分的物质和能量转移。在适宜光照下照射6小时后,在A、B的对应部位截取同等面积的叶片,烘干称重,分别记为MA、MB,获得相应数据,则可计算出该叶片的光合作用强度,其单位是mg/(dm2·h)。问题:(1)可用什么方法阻止两部分叶片的物质和能量转移?(2)6小时内上述B部位截取的叶片光合作用合成有机物的总量(M)为_________________。可先在中央大叶脉基部用热水、或热石蜡液烫伤或用呼吸抑制剂处理M=MB-MAP62解析:本方法又叫半叶称重法,常用大田农作物的光合速率测定。如图1所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。题中:MB表示6小时后叶片初始质量+光合作用有机物的总产量-呼吸作用有机物的消耗量,MA表示6小时后初始质量-呼吸作用有机物的消耗量,所以,M=MB-MA,就是光合作用有机物的经过6小时干物质的积累数(B叶片被截取部分在6小时内光合作用合成的有机物总量)。这样,真正光合速率(单位:mg/dm2·h)就是M值除以时间再除以面积就可测得。答案:B叶片被截取部分在6小时内光合作用合成的有机物总量变式训练1某同学欲测定植物叶片叶绿体的光合作用速率,做了如图所示实验。在叶柄基部作环剥处理(仅限制叶片有机物的输入和输出),于不同时间分别在同一叶片上陆续取下面积为1cm2的叶圆片烘干后称其重量,测得叶片的叶绿体真正光合作用速率=(3y一2z—x)/6g·cm-2·h-1(不考虑取叶圆片后对叶生理活动的影响和温度微小变化对叶生理活动的影响)。则M处的实验条件是()A.下午4时后将整个实验装置遮光3小时B.下午4时后将整个实验装置遮光6小时C.下午4时后在阳光下照射1小时D.晚上8时后在无光下放置3小时A解析:起始干重为上午10时移走时的叶圆片干重x克,从上午10时到下午4时,叶片在这6小时内既进行光合作用,又进行呼吸作用,所以下午4时移走的叶圆片干重y克减去上午10时移走时的叶圆片干重x克的差值,就等于该叶圆片净光合作用干物质量:(y一x)克。若要求出呼吸作用干物质量,应将叶片遮光处理,先假设叶片遮光处理为M小时后干重为z克,下午4时移走的叶圆片干重y克减去叶片遮光处理M小时后的干重z克差值,就是呼吸作用干物质量:(y一x)克。已知:测得叶片的叶绿体光合作用速率=(3y一2z—x)/6g·cm-2·h-1,据真正光合速率=表观光合速率+呼吸速率,得出:(3y一2z—x)/6=(y一x)/6+(y一x)/M,计算出M=3小时,A选项正确。解析:起始干重为上午10时移走时的叶圆片干重x克,从上午10时到下午4时,叶片在这6小时内既进行光合作用,又进行呼吸作用,所以下午4时移走的叶圆片干重y克减去上午10时移走时的叶圆片干重x克的差值,就等于该叶圆片净光合作用干物质量:(y一x)克。若要求出呼吸作用干物质量,应将叶片遮光处理,先假设叶片遮光处理为M小时后干重为z克,下午4时移走的叶圆片干重y克减去叶片遮光处理M小时后的干重z克差值,就是呼吸作用干物质量:(y一x)克。已知:测得叶片的叶绿体光合作用速率=(3y一2z—x)/6g·cm-2·h-1,据真正光合速率=表观光合速率+呼吸速率,得出:(3y一2z—x)/6=(y一x)/6+(y一x)/M,计算出M=3小时,A选项正确。解析:起始干重为上午10时移走时的叶圆片干重x克,从上午10时到下午4时,叶片在这6小时内既进行光合作用,又进行呼吸作用,所以下午4时移走的叶圆片干重y克减去上午10时移走时的叶圆片干重x克的差值,就等于该叶圆片净光合作用干物质量:(y一x)克.若要求出呼吸作用干物质量,应将叶片遮光处理,先假设叶片遮光处理为M小时后干重为z克,下午4时移走的叶圆片干重y克减去叶片遮光处理M小时后的干重z克差值,就是呼吸作用干物质量:(y一x)克。已知:测得叶片的叶绿体光合作用速率=(3y一2z—x)/6g·cm-2·h-1,据真正光合速率=表观光合速率+呼吸速率,得出:(3y一2z—x)/6=(y一x)/6+(y一x)/M,计算出M=3小时,A选项正确。二、气体体积变化法---测光合作用O2产生(或CO2消耗)的体积例2某生物兴趣小组设计了图3装置进行光合速率的测试实验(忽略温度对气体膨胀的影响)。①测定植物的呼吸作用强度:装置的烧杯中放入适宜浓度的NaOH溶液;将玻璃钟罩遮光处理,放在适宜温度的环境中;1小时后记录红墨水滴移动的方向和刻度,得X值。②测定植物的净光合作用强度:装置的烧杯中放入NaHCO3缓冲溶液;将装置放在光照充足、温度适宜的环境中;1小时后记录红墨水滴移动的方向和刻度,得Y值。请你预测在植物生长期红墨水滴最可能移动方向并分析原因:项目红墨水滴移动方向原因分析测定植物呼吸作用速率a.c.测定植物净光合作用强度b.d.向左移动向右移动c.玻璃钟罩遮光,植物只进行呼吸作用,植物进行有氧呼吸消耗O2,而释放的CO2气体被装置烧杯中NaOH溶液吸收,导致装置内气体、压强减小,红色液滴向左移动d.装置的烧杯中放入NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中,在植物的生长期,光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致装置内气体量增加,红色液滴向右移动解析:①测定植物的呼吸作用强度时,将玻璃钟罩遮光处理,绿色植物只进行呼吸作用,植物进行有氧呼吸消耗O2,而释放的CO2气体被装置烧杯中的NaOH溶液吸收,导致装置内气体量减小,压强减小,红色液滴向左移动,向左移动的距离X,就代表植物进行有氧呼吸消耗的量O2量,也就是有氧呼吸产生的CO2量。②测定植物的净光合作用强度:装置的烧杯中放入NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中,又处在植物的生长期,其光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致装置内气体量增加,红色液滴向右移动,向右移动距离Y,就代表表观光合作用释放O2量,也就是表观光合作用吸收的CO2量。所以,依据实验原理:真正光合速率=呼吸速率+表观光合速率,就可以计算出光合速率。变式训练2图4是探究绿色植物光合作用速率的实验示意图,装置中的碳酸氢钠溶液可维持瓶内的二氧化碳浓度,该装置置于20℃环境中。实验开始时,针筒的读数是0.2mL,毛细管内的水滴在位置X。20min后,针筒的容量需要调至0.6mL的读数,才能使水滴仍维持在位置X处。据此回答下列问题:(1)若将图中的碳酸氢钠溶液换成等量清水,重复上述实验,20min后,要使水滴维持在位置X处,针筒的容量(需向左/需向右/不需要)调节。(2)若以释放出的氧气量来代表净光合作用速率,该植物的净光合作用速率是mL/h。(3)若将图中的碳酸氢钠溶液换成等量浓氢氧化钠溶液,在20℃、无光条件下,30min后,针筒的容量需要调至0.1mL的读数,才能使水滴仍维持在X处。则在有光条件下该植物的实际光合速率是mL/h。1.21.4三、测溶氧量的变化---黑白瓶法例3某研究小组从当地一湖泊的某一深度取得一桶水样,分装于六对黑白瓶中,剩余的水样测得原初溶解氧的含量为10mg/L,白瓶为透明玻璃瓶,黑瓶为黑布罩住的玻璃瓶。将它们分别置于六种不同的光照条件下,分别在起始和24小时后以温克碘量法测定各组培养瓶中的氧含量,记录数据如下:表2(1)黑瓶中溶解氧的含量降低为3mg/L的原因是;该瓶中所有生物细胞呼吸消耗的O2量为mg/L·24h。(2)当光照强度为c时,白瓶中植物光合作用产生的氧气量为mg/L·24h。(3)光照强度至少为(填字母)时,该水层产氧量才能维持生物正常生活耗氧量所需。光照强度(klx)0(黑暗)abcde白瓶溶氧量(mg/L)31016243030黑瓶溶氧量(mg/L)333333生物呼吸消耗氧气7721aA10解析:(1)由光合作用的总反应式6CO2+12H2OC6H12O6+6O2+6H2O,可知反应前后气体体积不变,所以不需要调节针筒容量就可使水滴维持在X处。(2)光照条件下,由于光合作用吸收的CO2由缓冲液补充,缓冲液能维持CO2浓度,同时释放出O2导致密闭装置内气体压强增大,若使水滴X不移动,其针筒中单位时间内O2气体容量的增加就代表表观光合速率的大小。由题可知,若以释放出的氧气量来代表表观光合速率,该植物的表观光合作用速率是(0.6-0.2)×3=1.2(mL/h)。(3)瓶中液体改放为NaOH溶液,则装置内CO2完全被吸收,植物体不能进行光合作用,只能进行呼吸作用,瓶中气体的变化即呼吸消耗的O2的变化。则在有光条件下该植物的真正光合速率=表观光合速率+呼吸速率,既1.2+0.1×2=1.4(mL/h)。光能叶绿体变式训练3:以下实验是对低等植物的水域生态系统进行的测定。步骤1:取两个相同的透明玻璃瓶,分别编号为1号、2号。步骤2:用两个瓶同时从水深3m处取水样(都装满),立即测定2号瓶中的溶氧量,将1号瓶密封瓶口沉入原取水样处。步骤3:24h后将1号瓶取出,测定瓶中的溶氧量。按以上步骤重复3次,结果1号瓶溶氧量平均值为6.5mg,2号瓶溶氧量平均值为5.3mg。(1)24h后,1号瓶中溶氧变化量是,这说明。(2)经过24h后,1号瓶增加的有机物量(假设全为葡萄糖)为。(3)现欲使实验过程同时还能测出1号瓶24h中实际合成的有机物总量,需补充3号瓶进行实验。简述需补充的实验内容(请自行选择实验用具):。(4)设3号瓶溶氧量平均值为a,则1号瓶实际合成葡萄糖量为。增加1.2mg水生植物光合作用强度大于呼吸作用1.125mg另取一个和1号、2号相同的瓶,设法使之不透光,设为3号瓶,其他处理和1号瓶相同,24h后测定溶氧量,重复3次,去平均值。15/16×(6.5-a)【解题思路与答案】实验前测量2号瓶的溶氧量和实验后测量1号瓶的溶氧量,其目的还是测量2号瓶实验前后的溶氧量变化。为了使2号瓶实验前后保持水量、水质等的一致性,故设置1号瓶以进行开始溶氧量的测量。利用溶氧增加量可以计算出有机物的积累量。由上述分析可知,实验原理是利用水生低等植物光合作用氧气的产生与所有水生生物呼吸作用氧气的消耗关系计算该水层的生产能力,即生产者在一昼夜积累有机物的量。(1)实验开始时,1号瓶溶氧量应与2号瓶一样为5.3mg,24h后变成6.5mg,溶氧量增加的原因是由一昼夜中该水层水生植物光合作用产氧量超过所有水生生物的呼吸作用耗氧量引起的;(2)根据溶氧增加量可直接计算葡萄糖积累量为1.125mg;(3)另取一个和1号、2号相同的瓶,设法使之不透光,设为3号瓶,其他处理和1号瓶相同,24h后测定溶氧量,重复3次,去平均值。(4)根据现有实验条件,只能测知1号瓶溶氧增加量。要想知道1号瓶24h产生氧气的总量,根据氧气产生总量=溶氧增加量+生物消耗量,必须再测知1号瓶中所有生物的耗氧量,所以需要另设一个同样的黑色不透光的3号瓶,使该瓶生物只进行呼吸作用,处理方法同1号瓶。24h后测3号瓶溶氧量,设为a,则瓶中24h耗氧量为(5.3-a)mg,所以1号瓶产生氧气的总量为(6.5-5.3)mg+(5.3-a)mg,根据6O2~C6H12O6列出方程:180/y=6×32/[(6.5-5.3)+(5.3-a)]y=180×(6.5-a)/6×32=15(6.5-a)/16四、定性比较光合作用强度的大小---小叶片浮起数量法例4探究光