国际分类表版C类化学冶金

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

用频率估计概率§25.3利用频率估计概率普查为了一定的目的,而对考察对象进行全面的调查,称为普查;频数在考察中,每个对象出现的次数称为频数,频率而每个对象出现的次数与总次数的比值称为频率.总体所要考察对象的全体,称为总体,个体而组成总体的每一个考察对象称为个体;抽样调查从总体中抽取部分个体进行调查,这种调查称为抽样调查;样本从总体中抽取的一部分个体叫做总体的一个样本;必然事件不可能事件可能性0½(50%)1(100%)不可能发生可能发生必然发生随机事件(不确定事件)回顾概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0P(不确定事件)1.如果A为随机事件(不确定事件),那么0P(A)1.用列举法求概率的条件是什么?nmAP(1)实验的所有结果是有限个(n)(2)各种结果的可能性相等.当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?从一定高度落下的图钉,会有几种可能的结果?它们发生的可能性相等吗?任意写三个正整数,一定能够组成三角形吗?能够组成三角形的概率有多大?上面的问题,所有可能结果不是有限个,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.二、新课材料1:则估计抛掷一枚硬币正面朝上的概率为__o.5二、新课材料2:则估计油菜籽发芽的概率为___0.9数学史实人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.频率稳定性定理结论瑞士数学家雅各布.伯努利(1654-1705)最早阐明了可以由频率估计概率即:在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率在相同情况下随机的抽取若干个体进行实验,进行实验统计.并计算事件发生的频率根据频率估计该事件发生的概率.nm当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.问题1某林业部门要考查某种幼树在一定条件的移植的成活率,应采用什么具体做法?幼树移植成活率是实际问题中的一种概率。这个实际问题中的移植实验不属于各种结果可能性相等的类型,所以成活率要由频率去估计。在同样的条件下,大量的对这种幼树进行移植,并统计成活情况,计算成活的频率。如果随着移植棵树n的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值mn种植总数(n)成活数(n)成活的频率1080.80050472702350.871400369750662150013350.890350032030.915700063359000807314000126280.902nm某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?从表中数据可以发现,幼树移植成活的频率在____左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的概率为_____。1.林业部门种植了该幼树1000棵,估计能成活_______棵。2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵。5569000.90.9例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:A类树苗:B类树苗:移植总数(m)成活数(m)成活的频率(m/n)10850472702354003697506621500133535003203700063351400012628移植总数(m)成活数(m)成活的频率(m/n)109504927023040036075064115001275350029967000598514000119140.80.940.8700.9230.8830.8900.9150.9050.9020.90.980.850.90.8550.8500.8560.8550.851观察图表,回答问题串1、从表中可以发现,A类幼树移植成活的频率在_____左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计A类幼树移植成活的概率为____,估计B类幼树移植成活的概率为___.2、张小明选择A类树苗,还是B类树苗呢?_____,若他的荒山需要10000株树苗,则他实际需要进树苗________株?3、如果每株树苗9元,则小明买树苗共需________元.0.90.90.85A类11112100008(1)在实验时为了使实验结果更接近现实情况,需要注意些什么问题?(2)小组讨论:在进行移植试验时,移植的总数是越多越好还是越少越好?思考:教师点评实验时要避免走两个极端即既不能为了追求精确的概率而把实验的次数无限的增多,也不能为了图简单而使实验次数很少.实验时由于众多微小因素的影响,每次测得的结果虽不尽相同具有偶然性,但大量重复实验所得的结果却能反应客观规律,这称为大数定律.问题2某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成此表.并思考如果你是柑橘销售商,在整个销售过程中应注意些什么?51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm0.1010.0970.1030.1010.0980.0990.1030.097从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.0.1稳定0.9根据估计的概率可以知道,在10000千克柑橘中,完好柑橘的质量为10000X0.9=9000千克完好柑橘的实际成本为2X100009000≈2.22(元/千克)设每千克柑橘的销价为x元,则有(X—2.22)X9000=5000解得x≈2.8因此,出售柑橘时每千克大约定价为2.8元可获利润5000元。教师点评(1)通过这个问题,我们感受到概率在问题决策中的重要作用.告诉我们学数学还要会用数学的道理.(2)引导学生比较两个问题,注意一个细节:频率的精确度与概率的精确度概率伴随着我你他1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻.例3从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证一下你事先估计是否正确?例4你能估计图钉尖朝上的概率吗?大家都来做一做课堂检测1.经过大量试验统计,香樟树在我市的移植的成活率未95%.(1)丁家营镇在新村建设中栽了4000株香樟树,则成活的香樟树大约是________株.(2)盐池河镇在新村建设中要栽活2850株香樟树,需购幼树______株.2.某射击运动员在同一条件下练习射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178452击中靶心频率m/n(1)计算表中击中靶心的各个频率并填入表中.(2)这个运动员射击一次,击中靶心的概率多少4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:试一试(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约仍是40%左右.随着调查次数的增加,红色的频率基本稳定在40%左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2.知识应用如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150平方米,试估计不规则图形的面积.从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证一下你事先估计是否正确?你能估计图钉尖朝上的概率吗?大家都来做一做巩固抛掷次数(n)钉尖朝上的次数(m)钉尖朝上的次数(m/n)804316091240135320174400217抛掷次数(n)钉尖朝上的次数(m)钉尖朝上的次数(m/n)480261560312640355720392800434(2)估计图钉钉尖朝上的概率。0.5380.5690.5630.5440.5430.5440.5570.5550.5440.543图钉钉尖朝上的频率稳定在哪个值附近?3.一个口袋中放有20个球,其中红球6个,白球和黑球个若干个,每个球出了颜色外没有任何区别.(1)小王通过大量反复实验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在1/4左右,请你估计袋中黑球的个数.(2)若小王取出的第一个是白球,将它放在桌上,从袋中余下的球中在再任意取一个球,取出红球的概率是多少?升华提高了解了一种方法-------用多次试验频率去估计概率体会了一种思想:用样本去估计总体用频率去估计概率弄清了一种关系------频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.结束寄语:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.

1 / 839
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功