高等钢筋混凝土结构-2.混凝土的力学性能

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章混凝土的力学性能混凝土:由水泥、骨料和水拌合形成的人工合成材料。作用:作为钢筋混凝土结构的主体,一是自身承担较的大的荷载;二是容纳和维护各种构造的钢筋,组成合理的组合性结构材料。特点:非弹性、非线性、非匀质材料,较大离散性。混凝土是由水泥、水、骨料按一定比例配合,经过硬化后形成的人工石。其为一多相复合材料,其质量的好坏与材料、施工配合比、施工工艺、龄期、环境等诸多因素有关。第1章基本力学性能第一节混凝土的变形及破坏机理一.材料的组成和内部构造通常把混凝土的结构分为三种类型:A.微观结构:也即水泥石结构,包括水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成。B.亚微观结构:即混凝土中的水泥砂浆结构。C.宏观结构:即砂浆和粗骨料两组分体系。宏观结构亚微观结构微观结构粗骨料(分散相)水泥石(基相)细骨料(分散相)砂浆(基相)晶体骨架晶体带核凝胶体干缩孔隙凝缩氢氧化钙凝胶体混凝土组成结构晶体骨架:由完全水化的水泥结晶体和骨料组成,承受外力,具有弹性变形特点。塑性变形:在外力作用下由凝胶、孔隙、微裂缝产生。破坏起源:孔隙、微裂缝等原因造成。PH值:由于水泥石中的氢氧化钙存在,混凝土偏碱性。由于水泥凝胶体的硬化过程需要若干年才能完成,所以,混凝土的强度、变形也会在较长时间内发生变化,强度逐渐增长,变形逐渐加大。由于混凝土材料的非均匀微构造、局部缺陷和离散性较大而极难获得精确的计算结果。因此,主要讨论混凝土结构的宏观力学反应,即混凝土结构在一定尺度范围内的平均值。宏观结构中混凝土的两个基本构成部分,即粗骨料和水泥砂浆的随机分布,以及两者的物理和力学性能的差异是其非匀质、不等向性质的根本原因。粗骨料和水泥浆体的物理力学性能指标的典型值施工和环境因素引起混凝土的非匀质性和不等向性:例如浇注和振捣过程中,比重和颗粒较大的骨料沉入构件的底部,而比重小的骨料和流动性大的水泥砂浆、气泡等上浮,靠近构件模板侧面和表面的混凝土表层内,水泥砂浆和气孔含量比内部的多;体积较大的结构,内部和表层的失水速率和含水量不等,内外温度差形成的微裂缝状况也有差别;建造大型结构时,常需留出水平的或其它形状的施工缝……。当混凝土承受不同方向(即平行、垂直或倾斜于混凝土的浇注方向)的应力时,其强度和变形值有所不同。例如对混凝土立方体试件,标准试验方法规定沿垂直浇注方向加载以测定抗压强度,其值略低于沿平行浇注方向加载的数值。再如,竖向浇注的混凝土柱,截面上混凝土性质对称,而沿柱高两端的性质有别;卧位浇注的混凝土柱,情况恰好相反。这两种柱在轴力作用下的强度和变形也将不等。浇注方向NN浇注方向NN≤1.1.2材性的基本特点混凝土的材料组成和构造决定其4个基本受力特点:1.复杂的微观内应力、变形和裂缝状态将一块混凝土按比例放大,可以看作是由粗骨料和硬化水泥砂浆等两种主要材料构成的不规则的三维实体结构,且具有非匀质、非线性和不连续的性质。混凝土在承受荷载(应力)之前,就已经存在复杂的微观应力、应变和裂缝,受力后更有剧烈的变化。在混凝土的凝固过程中,水泥的水化作用在表面形成凝胶体,水泥浆逐渐变稠、硬化,并和粗细骨料粘结成一整体。在此过程中,水泥浆失水收缩变形远大于粗骨料的。此收缩变形差使粗骨料受压,砂浆受拉。这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。粗骨料和水泥砂桨的热工性能(如线膨胀系数)有差别。当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。压力拉力当混凝土承受外力作用时,即使作用应力完全均匀,混凝土内也将产生不均匀的空间微观应力场。在应力的长期作用下,水泥砂浆和粗骨料的徐变差使混凝土内部发生应力重分布,粗骨料将承受更大的压应力。所有这些都说明,从微观上分析混凝土,必然要考虑非常复杂的、随机分布的三维应力(应变)状态。其对于混凝土的宏观力学性能,如开裂,裂缝开展,变形,极限强度和破坏形态等,都有重大影响。混凝土内部有不可避免的初始气孔和缝隙,其尖端附近因收缩、温度变化或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值更高。2.变形的多元组成从砼的组成和构造特点分析,其变形值由3部分组成:⑴骨料的弹性变形占混凝土体积绝大部分的石子和砂,本身的强度和弹性模量值均比其组成的混凝土高出许多。即使混凝土达到极限强度值时,骨料并不破碎,变形仍在弹性范围以内,即变形与应力成正比,卸载后变形可全部恢复,不留残余变形。⑵水泥凝胶体的粘性流动水泥经水化作用后生成的凝胶体,在应力作用下除了即时产生的变形外,还将随时间的延续而发生缓慢的粘性流(移)动,混凝土的变形不断地增长,形成塑性变形。当卸载后,这部分变形一般不能恢复,出现残余变形。⑶裂缝的形成和扩展在拉应力作用下,混凝土沿应力的垂直方向发生裂缝。在压应力作用下,混凝土大致沿应力平行方向发生纵向劈裂裂缝,穿过粗骨料界面和砂浆内部。在应力的下降过程中,变形仍继续增长,卸载后大部分变形不能恢复。后两部分变形成分,不与混凝土的应力成比例变化,且卸载后大部分不能恢复,一般统称为塑性变形。不同原材料和组成的混凝土,在不同的应力水平下,这三部分变形所占比例有很大变化。①当混凝土应力较低时,骨料弹性变形占主要部分,总变形很小;②随应力的增大,水泥凝胶体的粘性流动变形逐渐加速增长;③接近混凝土极限强度时,裂缝的变形才明显显露,但其数量级大,很快就超过其它变形成分。在应力峰值之后,随着应力的下降,骨料弹性变形开始恢复,凝胶体的流动减小,而裂缝的变形却继续加大。3.应力状态和途径对力学性能的巨大影响混凝土的单轴抗拉和抗压强度的比值约为1:10,相应的峰值应变之比约为1:20,都相差一个数量级。两者的破坏形态也有根本区别。混凝土在基本受力状态下力学性能的巨大差别使得:①混凝土在不同应力状态下的多轴强度、变形和破坏形态等有很大的变化范围;②存在横向和纵向应力(变)梯度的情况下,混凝土的强度和变形值又将变化;③荷载(应力)的重复加卸和反复作用下,混凝土将产生程度不等的变形滞后、刚度退化和残余变形等现象;④多轴应力的不同作用途径,改变了微裂缝的发展状况和相互约束条件,混凝土出现不同力学性能反应。混凝土成熟度的增加,表示了水泥和骨料的粘结强度增大,水泥凝胶体稠化,粘性流动变形减小,因而混凝土的极限强度和弹性模量值都逐渐提高。但是,混凝土在应力的持续作用下,因水泥凝胶体的粘性流动和内部微裂缝的开展而产生的徐变与时俱增,使混凝土材料和构件的变形加大,长期强度降低。混凝土周围的环境条件既影响其成熟度的发展过程,又与混凝土材料发生物理的和化学的作用,对其性能产生有利的或不利的影响。4.时间和环境条件的影响混凝土随水泥水化作用的发展而渐趋成熟。有试验表明,水泥颗粒的水化作用由表及里逐渐深入,至龄期20年后仍未终止。混凝土的这些材性特点,决定了其力学性能的复杂、多变和离散,还由于混凝土原材料的性质和组成的差别很大,完全从微观的定量分析来解决混凝土的性能问题,得到准确而实用的结果是十分困难的。所以,从结构工程的观点出发,将一定尺度,(例如≥70mm或3~4倍粗骨料粒径)的混凝土体积作为单元,看成是连续的、匀质的和等向的材料,取其平均的强度、变形值和宏观的破坏形态等作为研究的标准,可以有相对稳定的力学性能.并且用同样尺度的标准试件测定各项性能指标。混凝土材性的复杂程度如上述,在不同的应力状态下发生显著差别的破坏过程和形态。混凝土在结构中主要用作受压材料,最简单的单轴受压状态下的破坏过程最有代表性。混凝土一直被认为是“脆性”,材料,无论是受压还是受拉状态,它的破坏过程都短暂、急骤,肉眼不可能仔细地观察到其内部的破坏过程。现代科学技术的高度发展,为材料和结构试验提供了先进的加载和量测手段。现在已经可以比较容易地获得混凝土受压和受拉的应力-应变全曲线,还可采用超声波检测仪、x光摄影仪、电子显微镜等多种精密侧试仪器,对混凝土的微观构造在受力过程中的变化情况加以详尽的研究。二.混凝土的变形及破坏机理试验证明,结构混凝土在承受荷载或外应力之前,内部就已经存在少量、分散的微裂缝,宽(2-5)×10-3、最长(1-2mm),其主要原因是在混凝土的凝固过程中,粗骨料和水泥砂浆的收缩差和不均匀温湿度场所产生的微观应力场。由于水泥砂浆和粗骨料表面的粘结强度只及该砂浆抗拉强度的35%~65%,而粗骨料本身的抗拉强度远超过水泥砂浆的强度,故当混凝土内微观拉应力较大时,首先在粗骨料界面出现微裂缝,称界面粘结裂缝。试验采用方形板式试件(127mm×127mm×12.7mm),既接近理想的平面应力状态,又便于在加载过程中直接获得裂缝的x光信息。试验证实了混凝土在受力前就存在初始微裂缝,都出现在较大粗骨料的界面.开始受力后直到极限荷载,混凝土内的微裂缝逐渐增多和扩展,可以分作3个阶段:粘结裂缝σ=0用X光观测的混凝土单轴受压的裂缝过程1.微裂缝相对称定期(σ/σmax0.3~0.5)这时混凝土的压应力较小,虽然有些微裂缝的尖端因应力集中而沿界面略有发展,也有些微裂缝和间隙因受压而有些闭合,对混凝土的宏观变形性能无明显变化。即使荷载的多次重复作用或者持续较长时间,微裂缝也不致有大发展,残余变形很小。用X光观测的混凝土单轴受压的裂缝过程σ=0.65σmax2.稳定裂缝发展期(σ/σmax0.75~0.9)混凝土的应力增大后,原有的粗骨料界面裂缝逐渐延伸和增宽,其它骨料界面又出现新的粘结裂缝。一些界面裂缝的伸展,逐渐地进人水泥砂浆,或者水泥砂浆中原有缝隙处的应力集力将砂浆拉断,产生少量微裂缝。这一阶段,混凝土内微裂缝发展较多,变形增长较大。但是,当荷载不再增大,微裂缝的发展亦将停滞,裂缝形态保持基本稳定。故荷载长期作用下,混凝土的变形将增大,但不会提前过早破坏。σ=0.85σmax用X光观测的混凝土单轴受压的裂缝过程3.不稳定裂缝发展期(σ/σmax0.75~0.9)混凝土在高应力作用下,粗骨料的界面裂缝突然加宽和延伸,大量地进人水泥砂浆;水泥砂浆中的已有裂缝也加快发展,并和相邻的粗骨料界面裂缝相连。这些裂缝逐个连通,构成大致平行于压应力方向的连续裂缝,或称纵向劈裂裂缝。若混凝土中部分粗骨料的强度较低,或有节理和缺陷,也可能在高应力下发生骨料劈裂。这一阶段的应力增量不大,而裂缝发展迅速,变形增长大。即使应力维持常值,裂缝仍将继续发展,不再能保持稳定状态。σmax用X光观测的混凝土单轴受压的裂缝过程从对混凝土受压过程的微观现象的分析,其破坏机理可以概括为:⑴首先是水泥砂浆沿粗骨料的界面和砂浆内部形成微裂缝;⑵应力增大后这些微裂缝逐渐地延伸和扩展,并连通成为宏观裂缝;⑶砂浆的损伤不断积累,切断了和骨料的联系,混凝土的整体性遭受破坏而逐渐地丧失承载力。混凝土在其它应力状态,如受拉和多轴应力状态下的破坏过程也与此相似。混凝土的强度远低于粗骨料本身的强度,当混凝土破坏后,其中的粗骨料一般无破损的迹象,裂缝和破碎都发生在水泥砂浆内部。所以,混凝土的强度和变形性能在很大程度上取决于水泥砂浆的质量和密实性。任何改进和提高水泥砂浆质量的措施都能较多地提高混凝土强度和改善结构的性能。02468102030s(MPa)e×10-3BACDA点以前,微裂缝没有明显发展,混凝土的变形主要弹性变形。A点应力随混凝土强度的提高而增加,对普通强度混凝土sA约为(0.3~0.4)fc,对高强混凝土sA可达(0.5~0.7)fc。A点以后,裂缝开始有所延伸发展,产生部分塑性变形。微裂缝的发展导致混凝土的横向变形增加。但该阶段微裂缝的发展是稳定的。典型的砼受压应力-应变曲线随应变增长,试件上相继出现多条不连续的纵向裂缝,横向变形急剧发展,承载力明显下降,混凝土骨料与砂浆的粘结不断遭到破,裂缝连通形成斜向破坏面。D点的应变e=(2~3)e0,应力s等于0.4fc左右。达到B点,内部一些微裂缝相互连通,裂缝发展已不稳定,横向变形突然增大,体积应变开始由压缩转为增加。在此应力的长期作用下,裂缝会持续发展最终导致破坏。取B点的应力作为混凝土的长期抗压强度。普通强度混凝土sB

1 / 39
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功