爆炸性环境电气防爆技术一.爆炸基本理论爆炸定义:由于氧化反应或者其他放热反应而引起压力和温度的骤升现象物理性爆炸:由于物质的体积膨胀,引起压力和温度的骤升造成容器外壳破损,产生爆炸简单化学爆炸:因受外界振动引起某些物质自身分解产生压力,温度骤升现象.复杂化学性爆炸:因受外界压力触发,炸药会自身分解氧气,引起氧化反应,造成压力、温度骤升现象爆炸化学性爆炸化工生产的各类化学反应(如硝化、脂化、聚合、催化、氧化等等)引起爆炸因工艺条件(温度、压力、速率等)失控,引起压力、温度骤升现象。(在反应釜、反应塔内)爆炸性混合物爆炸:因生产用的反应釜、泵、阀门管道等泄漏出的易燃物质,与环境中空气混和成爆炸性混合物,一旦被电气火花点燃,引起环境的压力和温核爆炸度骤升现象爆炸三要素:点火源明火电气火花静电火花雷电火花机械火花危险高温易燃物质空气爆炸危险场所定义:在大气条件下,气体、蒸汽或雾状、粉尘或纤维状的可燃物质与空气构成的混合物,在该混合物中点燃后,燃烧或爆炸将传遍整个未燃混合物的场所。防爆电气设备定义:按规定条件设计制造而不会引起周围爆炸性混合物(爆炸危险场所)爆炸的电气设备。二.与防爆电气有关的爆炸技术参数1.爆炸极限爆炸性混合物中的易燃物质与空气的比例,并不是什么比列都会点燃引起爆炸的,只有在某一个范围内,如氢气的爆炸极限是4%~75%。其中4%是氢气的爆炸下限,75%是氢气的爆炸上限。2.自燃温度爆炸性混合物除用火花可以点燃,也可以用加热温度来点燃,凡能引起爆炸性混合物爆炸的最低温度,称为自然温度。如氢气的自然温度为560℃3.爆炸压力爆炸性混合物在爆炸极限内被点燃后引起爆炸,必然会产生冲击压力波,它的最大压力值称为爆炸压力:由于大气压力是一个大气压,所以无论易燃物质压力多高,要形成爆炸混合物,必须在一个大气压下。因此,爆炸压力是在一个大气压下(初始压力为0)爆炸性混合物产生的最大压力。不同的爆炸性混合物爆炸压力是不一样的,在0.8MPa左右。但是由于爆炸性环境空间很大,如果爆炸性混合物不能全部爆炸完,则还会连续传遍整个未燃的爆炸性混合物,会引起压力增加现象。也就是二次、三次甚至更多次爆炸,每次的爆炸压力,是爆炸性混合物被前一次爆炸压力预压后压力(初始压力)的倍数。P%爆炸压力和浓度关系曲线爆炸压力和初始压力关系曲线P2P1P0P%4.最大试验安全间隙(MESG)在标准规定试验条件下,壳内所有浓度的被试验气体或蒸气与空气的混合物点燃后,通过25mm长的接合面均不能点燃壳外爆炸性气体混合物的外壳空腔两部分之间的最大间隙。5.最小点燃电流比(MICR)各种气体或蒸汽与空气的混合物的最小点燃电流对甲烷与空气的混合物的最小点燃电流之比。浓度%间隙mm外腔40.7爆炸40.6不爆炸100.6爆炸100.5不爆炸200.5爆炸200.4不爆炸320.4爆炸320.3不爆炸400.3不爆炸500.3不爆炸600.3不爆炸700.3不爆炸800.3不爆炸H2爆炸性混合物MESG举例MESG试验示意图6.最小点燃能量(MIE)在规定的试验条件下,能点燃最易点燃被试验气体或蒸气与空气的混合物的最小能量。最小点火能量与浓度关系曲线EminP%MIE试验示意图爆炸性混合物爆炸极限%自然温度℃爆炸压力MPa最大安全试验间隙MESG(mm)最小点火能量MIE(mJ)甲烷5~155370.721.140.28丙烷2.1~9.54660.900.920.26乙醚1.7~481700.920.870.19乙烯2.3~364250.800.650.06氢4~755600.740.290.019乙炔1.5~823051.030.370.019爆炸性混合物的爆炸技术参数举例三.中国爆炸危险场所电气安全规程和标准爆炸危险场所电气安全规程主要内容:1.爆炸危险场所区域等级判断原则、判断方法及绘制2.爆炸危险场所防爆电气设备防爆型式选用方法3.爆炸危险场所电气线路的设计防爆电气设备制造标准特种的结构和电路主要型式1.设备通用要求GB3836.1—20102.隔爆型电气设备GB3836.2—20103.增安型电气设备GB3836.3—2010电气防爆技术4.爆炸危险场所电气线路和防爆电气设备的安装施工要求5.爆炸危险场所电气接地保护要求6.爆炸危险场所电气安装置竣工验收要求7.爆炸危险场所电气装置安全运行和维修8.爆炸危险场所电气装置检修要求9.爆炸危险场所管理和技术人员安全培训要求10.爆炸危险场所的电气安全监督和检查要求4.本质安全型电气设备GB3836.4—20105.正压型电气设备GB3836.5—20046.充油型电气设备GB3836.6—20047.充砂型电气设备GB3836.7—20048.无火花型电气设备GB3836.8—20039.浇封型电气设备GB3836.9—200610.粉尘型电气设备GB12746.1—2000规范和标准有1.AQ3009-2007危险场所电气防爆安全规范2.爆炸性气体环境用电气设备的检修GB3836.13—19973.爆炸性气体环境用电气设备危险场所分类GB3836.14—20004.爆炸性气体环境用电气设备危险场所电气安装GB3836.15—2000四.爆炸性环境用电气设备的分类及分组1.爆炸性环境用电气设备的分类分三大类Ⅰ类:煤矿瓦斯气体环境Ⅱ类:除煤矿瓦斯气体之外的其他爆炸性气体环境Ⅲ类:除煤矿以外的爆炸性粉尘环境2.爆炸性环境用电气设备的分级1.爆炸性气体环境电气设备的分级(1)按最大试验安全间隙分级(MESG)MESG=1.14(mm)煤矿井下甲烷,为Ⅰ类不分级,标志Ⅰ0.9≦MESG1.14(mm)为Ⅱ类A级,标志为ⅡA代表气体丙烷0.5MESG0.9(mm)为Ⅱ类B级,标志为ⅡB代表气体乙烯MESG≦0.5(mm)为Ⅱ类C级,标志为ⅡC代表气体氢气(2)按最小点燃电流比分级(MICR)最小点燃电流:在规定的试验条件下,对电阻电路或电*电路用火花试验装置进行3000次火花试验。能够发生点燃的最小电流。最小点燃电流比(MICR):各种气体或蒸汽与空气的混合物的最小点燃电流对甲烷与空气的混合物的最小点燃电流之比。MICR=1煤矿井下甲烷,为Ⅰ类不分级,标志Ⅰ0.8MICR1为Ⅱ类A级,标志为ⅡA0.45≦MICR≦0.8为Ⅱ类B级,标志为ⅡBMICR0.45为Ⅱ类C级,标志为ⅡC2.爆炸性粉尘环境电气设备的分级Ⅲ类A级可燃性飞絮如棉纤维、亚麻纤维Ⅲ类B级非导电性粉尘如玉米粉、糖粉Ⅲ类C级导电性粉尘如镁粉、铝粉、火药、炸药性粉尘3.Ⅱ类电气设备最高表面温度的分组按易燃物质的引燃温度(自燃温度),分为六组,具体范围为:组别引燃温度t℃T1t>450T2450≥t>300T3300≥t>200T4200≥t>135T5135≥t>100T6100≥t>85表2-3爆炸性气体分类、分级、分组举例表类和级最大试验安全间隙MESG毫米最小点燃电流比MICR引燃温度(℃)与组别T1T2T3T4T4T5T>450450≥T>300300≥T>200200≥T>135135≥T>100100≥T>85Ⅰ1.141.0甲烷ⅡA0.9<MESG<1.140.8<MICR<1.0乙烷、丙烷、丙酮、苯乙烯、氯乙烯、氯苯、甲苯、苯、氨、甲醇、一氧化碳、乙酸乙酯、乙酸丁烷、乙醇、丙烯、丁醇、乙酸丁酯、乙酸戊酯、乙酸酐、氯乙烯戊烷、己烷、庚烷、葵烷、辛烷、汽油、硫化氢、环己烷乙醚、乙醛亚硝酸乙酯ⅡB0.5<MESG≤0.90.45<MICR≤0.8二甲醚、民用煤气、环丙烷环氧乙烷、环氧丙烷、丁二烯、乙烯异戊二烯、四氢呋喃二乙醚、四氯乙烯ⅡCMESG≤0.5MICR≤0.45水煤气、氢乙炔二硫化碳硝酸乙酯五.爆炸危险场所的分类、分级1.分类按爆炸危险场所存在易燃物质与空气混合的状态,分为爆炸性气体危险场所和爆炸性粉尘危险场所两大类。2.分级(1)爆炸性气体危险场所按爆炸性气体混合物出现的频繁程度和持续时间分三个区域1)0级区域:在正常情况下,爆炸性气体混合物,连续地、一段时间频繁出现或长时间存在的场所。2)1级区域:在正常情况下,爆炸性气体混合物有可能出现的场所。3)2级区域:在正常情况下,爆炸性气体混合物不能出现,仅在不正常情况下偶尔短时间出现。(3)爆炸性粉尘危险场所按可燃性粉尘和空气混合物出现的频率和持续时间及粉尘层厚度分为三个区域。1)20级区域:在正常运行过程中可燃性粉尘连续出现或经常出现,其数量足以形成可燃性粉尘与空气混合物和/或可能形成无法控制和极厚的粉尘层的场所及容器内部。2)21级区域:在正常运行过程中可能产生可燃浓度的可燃粉尘与空气混合物的场所3)22级区域:在正常运行下,可燃性粉尘与空气混合物不能出现,仅在异常条件下,可燃粉尘偶尔出现并且只是短时间存在的场所。六.防爆电气设备的保护等级(EPL)设备的保护等级(EPL):依据设备成为点燃源的可能性及区别爆炸性气体环境、爆炸性粉尘环境和有甲烷的煤矿爆炸性环境的差别而规定的保护等级。Ga:气体环境,具有“很高”的保护等级,在正常运行过程中、在预期的故障条件下或者在罕见的故障条件下不会成为点燃源。Gb:气体环境,具有“高”的保护等级,在正常运行过程中、在预期的故障条件下不会成为点燃源。Gc:气体环境,具有“加强”的保护等级,在正常运行过程中不会成为点燃源,也可采取附加保护,保证在点燃源有规律预期出现的情况下(例如灯具的故障),不会点燃。Da:粉尘环境,具有“很高”的保护等级,在正常运行过程中、在预期的故障条件下或者在罕见的故障条件下不会成为点燃源。Db:粉尘环境,具有“高”的保护等级,在正常运行过程中、在预期的故障条件下不会成为点燃源。Dc:粉尘环境,具有“加强”的保护等级,在正常运行过程中不会成为点燃源,也可采取附加保护,保证在点燃源有规律预期出现的情况下(例如灯具的故障),不会点燃。设备保护等级(EPL)使用区域Ga0Gb1Gc2Da20Db21Dc22七.防爆电气设备的防爆原理及防爆型式1.间隙防爆原理(d)一个外壳能承受内部爆炸性气体混合物的爆炸压力,并有一个或几个金属面缝隙可以阻止内部的爆炸向外壳周围爆炸性气体混合物传播,达到防爆要求。2.小于点燃能量防爆原理(ia/ib)有效降低电气电路的电压、电流、储能元件的数值,保证电路正常工作或规定的故障状态下产生的电火花和热效应能量,都低于规定的爆炸性气体混合物最小点燃能量,达到防爆要求。3.阻止点火源与爆炸性混合物相接触防爆原理(p、o、q、m、h)采取有效可靠措施(如通风、充油、充砂、浇封、气密),使点火源与周围爆炸性气体混合物隔离,达到防爆要求。4.在特定的条件下提高电气设备的电气安全措施防爆原理(e、n)在正常工作时不会产生电火花和热效应的电气设备,进一步提高电气安全措施,达到防爆要求。隔爆型电气设备(d)隔爆型电气设备是指具有隔爆外壳的电气设备,防爆标志为“d”。隔爆外壳是指能承受内部的爆炸压力,并能阻止爆炸火焰向周围环境传播的防爆外壳。电气设备外壳的内部由于呼吸作用会进入周围的爆炸性气体混合物,当设备产生电火花及危险高温时,将引燃壳内的爆炸性气体混合物,形成巨大的爆破力及冲击波。一方面隔爆外壳应能承受内部的爆炸压力而不破损;另一方面隔爆外壳的接合面应能阻止爆炸火焰向壳外传播点燃周围的爆炸性气体混合物。因此隔爆外壳应有耐爆性及隔爆性两种特性。隔爆型电气设备的外壳材料一般采用金属材质制成。常用的有钢板、铸钢、铸铝合金、铸铁等材料。当采用铸铝时,应用抗拉强度不低于12Mpa,含镁量不低于6%的铝合金。当外壳容积不大于0.01升时,可采用陶瓷材料制造;当外壳容积不大于0.5升时,可采用塑料材料制造,但塑料外壳的结构强度受成型工艺及易自然老化的影响,一般用于外壳容积小于0.1升的隔爆部件。由于制造、安装、维护等原因,隔爆外壳不可能是天衣无缝的整体,而是由许多个零部件组成。零件间的连接缝隙会成为壳内的爆炸产物所通过的路径,引燃周围的爆炸性气体混合物。这些零部件的配合部分称隔爆接合面,其接合缝隙称隔爆接合面间隙。隔