A high-level programming-language implementation o

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

arXiv:physics/0410086v2[physics.flu-dyn]1Feb2006Ahigh-levelprogramming-languageimplementationoftopologyoptimizationappliedtosteady-stateNavier–StokesflowLauritsHøjgaardOlesen,FridolinOkkels,andHenrikBruusMIC–DepartmentofMicroandNanotechnology,TechnicalUniversityofDenmark,DK-2800KongensLyngby,Denmark(Dated:26June2005)Wepresentaversatilehigh-levelprogramming-languageimplementationofnonlineartopologyoptimization.OurimplementationisbasedonthecommercialsoftwarepackageFemlab,anditallowsawiderangeofoptimizationobjectivestobedealtwitheasily.Weexemplifyourmethodbystudiesofsteady-stateNavier–Stokesflowproblems,thusextendingtheworkbyBorrvallandPeterssonontopologyoptimizationoffluidsinStokesflow[Int.J.Num.Meth.Fluids2003;41:77–107].Weanalyzethephysicalaspectsofthesolutionsandhowtheyareaffectedbydifferentparametersoftheoptimizationalgorithm.AcompleteexampleofourimplementationisincludedasFemlabcodeinanappendix.Keywords:topologyoptimization,Navier–Stokesflow,inertialeffects,FemlabI.INTRODUCTIONThematerialdistributionmethodintopologyoptimizationwasoriginallydevelopedforstiffnessdesignofmechanicalstructures[2]buthasnowbeenextendedtoamultitudeofdesignproblemsinstructuralmechanicsaswellastoopticsandacoustics[3,4,5,6].RecentlyBorrvallandPeterssonintroducedthemethodforfluidsinStokesflow[1].However,itisdesirabletoextendthemethodtofluidsdescribedinafullNavier–Stokesflow;adirectionpioneeredbytheworkofSigmundandGersborg-Hansen[7,8,9].Inthepresentworkwepresentsuchanextensionbyintroducingaversatilehigh-levelprogramming-languageimplementationofnonlineartopologyoptimization,basedonthecommercialsoftwarepackageFemlab.IthasawiderrangeofapplicabilitythantheNavier–Stokesproblemsstudiedhere,andmoreoveritallowsawiderangeofoptimizationobjectivestobedealtwitheasily.Extendingthetopologyoptimizationmethodtonewphysicaldomainsgenerallyinvolvessomerethinkingofthedesignproblemandsome”trialanderror”todeterminesuitabledesignobjectives.Italsorequiresthenumericalanalysisandimplementationoftheproblem,e.g.,usingthefiniteelementmethod(FEM).Thisprocessisacceleratedalotbyusingahigh-levelFEMlibraryorpackagethatallowsdifferentphysicalmodelstobejoinedandeasesthetasksofgeometrysetup,meshgeneration,andpostprocessing.Thedisadvantageisthathigh-levelpackagestendtohaverathercomplexdatastructure,noteasilyaccessibletotheuser.Thiscancomplicatetheactualimplementationoftheproblembecausethesensitivityanalysisistraditionallyformulatedinalow-levelmanner.Inthisworkwehaveusedthecommercialfinite-elementpackageFemlabbothforthesolutionoftheflowproblemandforthesensitivityanalysisrequiredbytheoptimizationalgorithm.Weshowhowthissensitivityanalysiscanbeperformedinasimplewaythatisalmostindependentoftheparticularphysicalproblemstudied.Thisapproachprovesevenmoreusefulformulti-fieldextensions,wheretheflowproblemiscoupledto,e.g.,heatconduction,convection-diffusionofsolutes,anddeformationofelasticchannelwallsinvalvesandflowrectifiers[10].Thepaperisorganizedasfollows:InSec.IIweintroducethetopologyoptimizationmethodforfluidsinNavier–Stokesflow,anddiscusstheobjectiveofdesigningfluidicdevicesorchannelnetworksforwhichthepowerdissipationisminimized.InSec.IIIweexpresstheNavier–StokesequationsinagenericdivergenceformthatallowsthemtobesolvedwithFemlab.Thisformencompassesawiderangeofphysicalproblems.Wealsoworkoutthesensitivityanalysisforaclassofintegral-typeoptimizationobjectivesinsuchawaythatthebuilt-insymbolicdifferentiationtoolsofFemlabcanbeexploited.InSec.IVwepresentourtwonumericalexamplesthatillustratesdifferentaspectsandproblemstoconsider:Thefirstexampledealswithdesigningastructurethatcanguidetheflowinthereversedirectionofanappliedpressuredrop.ThegeneraloutcomeoftheoptimizationisanS-shapedchannel,buttheexampleillustrateshowthedetailedstructuredependsonthechoiceoftheparametersofthealgorithm.ThesecondexampledealswithafourterminaldevicewherethefluidicchanneldesignthatminimizesthepowerdissipationshowsaReynoldsnumberdependence.AstheReynoldsnumberisincreasedatransitionoccursbetweentwotopologicallydifferentsolutions,andwediscusshowthepositionofthetransitiondependsonthechoiceofinitialconditions.FinallyintheappendixweincludeatranscriptofourFemlabcoderequiredforsolvingthesecondnumericalexample.Thecodeamountsto111lines–excludingtheoptimizationalgorithmthatcanbeobtainedbycontactingK.Svanberg[11,12,13].2II.TOPOLOGYOPTIMIZATIONFORNAVIER–STOKESFLOWINSTEADYSTATEAlthoughourhigh-levelprogramming-languageimplementationisgenerallyapplicablewehavechosentostartontheconcretelevelbytreatingthebasicequationsforourmainexample:thefullsteady-stateNavier–Stokesflowproblemforincompressiblefluids.WeconsideragivencomputationaldomainΩwithappropriateboundaryconditionsfortheflowgivenonthedomainboundary∂Ω.ThegoaloftheoptimizationistodistributeacertainamountofsolidmaterialinsideΩsuchthatthemateriallayoutdefinesafluidicdeviceorchannelnetworkthatisoptimalwithrespecttosomeobjective,formulatedasafunctionofthevariables,e.g.,minimizationofthepowerdissipatedinsidethedomain.Thebasicprincipleinthematerialdistributionmethodfortopologyoptimizationistoreplacetheoriginaldiscrete

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功