13Duality and auxiliary functions for Bregman dist

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

DualityandAuxiliaryFuntionsforBregmanDistanesStephenDellaPietra,VinentDellaPietra,andJohnLaertyFebruary10,2002CMU-CS-01-109RShoolofComputerSieneCarnegieMellonUniversityPittsburgh,PA15213AbstratWeformulateandproveaonvexdualitytheoremforBregmandistanesandpresentatehniquebasedonauxiliaryfuntionsforderivingandprovingonvergeneofiterativealgorithmstominimizeBregmandistanesubjettolinearonstraints.ThisresearhwaspartiallysupportedbytheAdvanedResearhandDevelopmentAtivityinInformationTehnology(ARDA),ontratnumberMDA904-00-C-2106,andbytheNationalSieneFoundation(NSF),grantCCR-9805366.TheviewsandonlusionsontainedinthisdoumentarethoseoftheauthorsandshouldnotbeinterpretedasrepresentingtheoÆialpoliies,eitherexpressedorimplied,ofARDA,NSF,ortheU.S.government.Keywords:Bregmandistane,onvexduality,Legendrefuntions,auxiliaryfuntionsI.IntrodutionConvexityplaysaentralroleinawidevarietyofmahinelearningandstatistialinfereneprob-lems.Astandardparadigmistodistinguishapreferredmemberfromasetofandidatesbaseduponaonveximpuritymeasureorlossfuntiontailoredtothespeiproblemtobesolved.Examplesinludeleastsquaresregression,deisiontrees,boosting,onlinelearning,maximumlike-lihoodforexponentialmodels,logistiregression,maximumentropy,andsupportvetormahines.SuhproblemsanoftenbenaturallyastasonvexoptimizationproblemsinvolvingaBregmandistane,whihanleadtonewalgorithms,analytialtools,andinsightsderivedfromthepowerfulmethodsofonvexanalysis.InthispaperweformulateandproveaonvexdualitytheoremforminimizingagenerallassofBregmandistanessubjettolinearonstraints.Thedualityresultisthenusedtoderiveiterativealgorithmsforsolvingtheassoiatedoptimizationproblem.OurpresentationismotivatedbythereentworkofCollins,Shapire,andSinger(2001),whoshowedhowertainboostingalgorithmsandmaximumlikelihoodlogistiregressionanbeuniedwithintheframeworkofBregmandistanes.Inpartiular,speiinstanesoftheresultsgivenhereareusedbyCollinsetal.(2001)toshowtheonvergeneofafamilyiterativealgorithmsforminimizingtheexponentialorlogistiloss.Whileinvokingmethodsfromonvexanalysisanunifyandlarifytherelationshipbetweendier-entmethods,thehigherlevelofabstrationoftenomesataprie,sinethereanbeonsiderabletehnialities.Forexample,insometreatmentstheassumptionsontheonvexfuntionsthatanbeusedtodeneBregmandistanesareverytehnialanddiÆulttoverify.HerewetradeogeneralityforrelativesimpliitybyworkingwitharestritedlassofBregmandistanes,whihhoweverinludesmanyoftheexamplesthatariseinmahinelearning.OurtreatmentofdualityandauxiliaryfuntionsforBregmandistanesloselyparallelstheresultspresentedbyDellaPietraetal.(1997)fortheKullbak-Leiblerdivergene.Inpartiular,thestatementandproofofthedualitytheoremgivenin(DellaPietraetal.,1997)arriesoverwithonlyafewhangestothelassofBregmandistanesweonsider.Ourapproahdiersfrommuhoftheliteratureinonvexanalysisinseveralways.First,weworkprimarilywiththeargumentatwhihaonvexonjugatetakesonitsvalue,ratherthanthevalueofthefuntionitself.Thereasonforthisisthattheargumentorrespondstoastatistialmodel,whihisthemainobjetofinterestinstatistialormahinelearningappliations,whilethevalueorrespondstoalikelihoodorlossfuntion.Seond,whileBregmandistanesaretypiallydenedonlyontheinteriorofthedomainoftheunderlyingonvexfuntion,weassumethatthereisaontinuousextensiontotheentiredomain.Thismakesitpossibletoformulateaverynaturaldualitytheoremthatalsoinludesmanyasesrequiredinpratie,whenthedesiredmodelmaylieontheboundaryofthedomain.Thefollowingsetionreallsthestandarddenitionsfromonvexanalysisthatwillberequired,andpresentsthetehnialassumptionsmadeonthelassofBregmandistanesthatweworkwith.Wealsointroduesomenewterminology,usingthetermsLegendre-BregmanonjugateandLegendre-BregmanprojetiontoextendthelassialnotionoftheLegendreonjugateandtransformtoBregmandistanes.Setion3ontainsthestatementandproofofthedualitytheoremthatonnetstheprimalproblemwithitsdual,showingthatthesolutionisharaterizedingeometrialterms1byaPythagoreanequality.Setion4denesthenotionofanauxiliaryfuntion,whihisusedtoonstrutiterativealgorithmsforsolvingonstrainedoptimizationproblems.ThissetionshowshowonvexityanbeusedtoderiveanauxiliaryfuntionforBregmandistanesbasedonseparablefuntions.Thelastsetionsummarizesthemainresultsofthepaper.II.BregmanDistanesandLegendre-BregmanProjetionsInthissetionwebeginbyestablishingournotationandreallingtherelevantnotionsfromonvexanalysisthatwerequire;thelassitext(Rokafellar,1970)remainsoneofthebestreferenesforthismaterial.WethendeneBregmandistanesandtheirassoiatedonjugatefuntionsandprojetions,andderivevariousrelationsbetweenthesethatwillbeimportantinprovingthedualitytheorem.NextwestateourassumptionsontheunderlyingonvexfuntionthatenableustoderivethesepropertiesfortheontinousextensionoftheBregmandistanetotheentiredomain.A.NotationandBasiDenitionsWewillusenotationthatissuggestiveofourmainappliations:ratherthan(x)wewillwrite(p)or(q),havinginmindprobabilitydistributionsporq.Aonvexfuntion:SRm![1;+1℄isproperifthereisnoq2Swith(q)=1andthereissomeqwith(q)6=1.Theeetivedomainof,denoted,isthesetofpointswhereisnite:=fq2Sj(q)1g;for

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功