Optimization problems expressibility, approximatio

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

OptimizationProblems:Expressibility,ApproximationPropertiesandExpectedAsymptoticGrowthofOptimalSolutionsThomasBehrendtKevinComptonyErichGradelTR-93-002January1993AbstractWeextendtherecentapproachofPapadimitrouandYannakakisthatrelatestheapproximationpropertiesofoptimizationproblemstotheirlogicalrepresentation.OurworkbuildsonresultsbyKolaitisandThakurwhosytematicallystudiedtheexpressibilityclassesMaxnandMaxnofmaximizationproblemsandshowedthattheyformashorthierarchyoffourlevels.Thetwolowestlevels,Max0andMax1coincidewiththeclassesMaxSnpandMaxNpofPapadimitriouandYannakakis;theycontainonlyproblemsthatareapproximableinpolynomialtimeuptoaconstantfactorandthusprovidealogicalcriterionforapproximability.How-ever,therearecomputationallyveryeasymaximizationproblems,suchasMaximumConnectedComponent(MCC)thatfailtosatisfythiscriterion.Wemodifytheseclassesbyallowingtheformulaetocontainpredicatesthataredenableinleastxpointlogic.Inaddition,wemaximizenotonlyoverrelationsbutalsooverconstants.WecalltheextendedclassesMaxFPiandMaxFPi.TheproofofPapadimitriouandYannakakiscanbeextendedtoMaxFP1toshowthatallproblemsinthisclassareapproximable.Someproblems,suchasMCC,descendfromthehighestlevelintheoriginalhierarchytothelowestlevelMaxFP0inthenewhierarchy.ThusourextendedclassMaxFP1providesamorepowerfulsucientcriterionforapproximabilitythantheoriginalclassMax1.MathematischesInstitut,UniversitatBasel,Rheinsprung21,CH-4051Basel,Switzerland,graedel@urz.unibas.chyEECSDepartment,UniversityofMichigan,AnnArborMI48109-2122,U.S.A.,kjc@eecs.umich.eduWeseparatetheextendedclassesandprovethatanumberofimportantproblemsdonotbelongtoMaxFP1.TheseincludeMaxClique,MaxIndependentSet,V-CDimensionandMaxCommonInducedSubgraph.Todothisweintroduceanewmethodthatcharacterizesratesofgrowthofaverageoptimalsolutionsizes.Forinstance,itisknownthattheexpectedsizeofamaximalcliqueinarandomgraphgrowslogarithmicallywithrespecttothecardinalityofthegraph.WeshowthatnoprobleminMaxFP1canhavethisproperty,thusprovingthatMaxCliqueisnotinMaxFP1.Thistechniqueisrelatedtolimitlawsforvariouslogicsandtotheprobabilisticmethodfromcombinatorics.Webelievethatthismethodmaybeofindependentinterest.Incontrasttotherecentresultsonthenon-approximabilityofmanymaximizationproblems,amongthemMaxClique,ourresultsdonotdependonanyunprovedhypothesisfromcomplexitytheory,suchasP6=NP.ii1IntroductionAlthoughthenotionofNP-completenesswasdenedintermsofdecisionproblems,theprimemotivationforitsstudyanddevelopmentwastheapparentintractabilityofalargefamilyofcombinatorialoptimizationproblems.NP-completenessofadecisionproblemrulesoutthepossibilityndinganoptimalsolutionofthecorrespondingoptimizationprobleminpolynomialtimeunlessP=NP.Itdoesnotexclude,however,thepossibilitythatthereareecientalgorithmswhichproduceapproximatesolutions.Infact,formanyoptimizationproblemswithNP-completedecisionproblems,therearesimpleandecientalgorithmsthatproducesolutionsdieringfromoptimalsolutionsbyatmostaconstantfactor.Forsomeproblems,thereevenexistso-calledpolynomial-timeapproximationschemes(Ptas),whichproduceapproximatesolutionstoanydesireddegreeofaccuracy.Forotherproblems,notablytheTravelingSalespersonProblem,theredonotexistecientapproximationsunlessP=NP(see[10]).Untilnowthe\structuralreasonsforthedierentapproximationpropertiesofNPoptimizationproblemshavenotbeensucientlyunderstood.PapadimitriouandYannakakis[21]providedanewperspectivebyrelatingtheapprox-imationpropertiesofoptimizationproblemstotheirlogicalrepresentation.ExploitingFagin’scharacterizationofNPbyexistentialsecondorderlogic[9],theydenedtwoclassesofoptimizationproblems,MaxSnpandMaxNp,andshowedthatallproblemsintheseclassesareapproximableinpolynomialtimeuptoaconstantfactor.TheyalsoidentiedahostofproblemsthatarecompleteforMaxSnpwithrespecttoso-calledL-reductions,whichpreservepolynomial-timeapproximationschemes.Veryrecently,theclassesMaxSnpandMaxNphavereceivedalotofattentionduetoresultsbyAroraetal.[2]showingthatproblemswhicharehardforMaxSnpcannothaveaPtas,unlessP=NP.WepresentthesyntacticcriterionofPapadimitriouandYannakakisinthemoregeneralformandnotationprovidedbyKolaitisandThakur[15].Denition1.1Recallthatn(respectivelyn)areprexclassesinrstorderlogic,con-sistingofformulaeinprexnormalformwithnalternatingblocksofquantiersbeginningwith9(respectively8).TheclassesMaxn(respectivelyMaxn)consistofmaximiza-tionproblemsQwhoseinputinstancesarenitestructuresAofaxedsignature,suchthatthecostofanoptimalsolutionofQoninputAisdenablebyanexpressionoptQ(A)=maxSjfx:Aj=(x;S)gjwhere(x;S)isan-formula(respectivelyan-formula)andwhereSarepredicatevariablesnotcontainedin.Examples.1.MaxCut(MC)istheproblemofdecomposingthevertexsetofagivengraphGintotwosubsetssuchthatthenumberofedgesbetweenthemismaximal.ItisinMax0:optMC(G)=maxUjf(x;y):Gj=Exy^(Ux$:Uy)gj:2.MaxSatistheproblemofndinganassignmentthatsatisesthemaximalnumberofclausesinagivenpropositionalformulainCNF.Suchaformulacanberepresentedby1astructureF=(U;P;N)withuniverseUconsistingoftheclausesandthevariables,andwi

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功